Research Article
BibTex RIS Cite

Selective Separation and Preconcentration of Thorium(IV) in Bastnaesite Ore Using Thorium(IV)-Imprinted Cryogel Polymer

Year 2018, Volume: 46 Issue: 2, 187 - 197, 03.06.2018

Abstract

I
n this study, selective separation and preconcentration of Th(IV) in aqueous solutions and bastnaesite ore
in the presence various lanthanide ions by using Th(IV)-imprinted polymer was conducted. For this purpose,
Th(IV) was complexed with N-methacryloyl antipyrine (MAAP) and the prepared (MAAP)2-Th(IV) complex
monomer was polymerized with 2-hydroxyethyl methacrylate (HEMA) cryogel to prepare pHEMA-(MAAP)2-
Th(IV) cryogel polymer by free radical polymerization. Th(IV) was desorbed with 5.0 mol.L-1 HNO3 and thus
Th(IV)-imrinted were created onto p-HEMA-(MAAP)2 cryogel polymer. To determine the optimum conditions,
in the process of selective binding of Th(IV) ion to Th(IV)-imprinted p-HEMA-(MAAP)2 cryogel polymer, some
parameters such as pH, flow rate, initial Th(IV) concentration were investigated. Under the optimum conditions,
the maximum binding capacity was obtained as 48.30 mg.g-1. Selectivity studies were also carried out in the
presence of Ce(III), La(III) and Eu(III) ions using Th(IV)-imprinted p-HEMA-(MAAP)2 cryogel polymer. It was
found that p-HEMA-(MAAP)2 cryogel polymer displayed high selectivity toward Th(IV) ion.

References

  • S.F. Ashley, G.T. Parks, W.J. Nuttall, C. Boxall, R.W. Grimes, Thorium fuel has risks, Nature, 492 (2012) 31–33.
  • Y.P. Du, Y.W.Zhang, Z.G. Yan, L.D. Sun, C.H. Yan, Highly luminescent self-organized sub-2-nm EuOF nanowires, J. Am. Chem. Soc., 131 (2009) 16364–16365.
  • B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, Z.H. Cheng, Recent progress in exploring magnetocaloric materials, Adv. Mater., 21 (2009) 4545–4564.
  • V.K. Jain, A. Handa, S.S. Sait, P. Shrivastav, Y.K. Agrawal, Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone, Anal. Chim. Acta, 429 (2001) 237–246.
  • I. Dolak, M. Karakaplan, B. Ziyadanoğulları, R. Ziyadanoğulları, Solvent extraction, preconcentration and determination of thorium with monoaza 18-Crown-6 derivative, Bul. Kor. Chem. Soc., 32 (2011) 1564-1568.
  • S.K. Sahu, V. Chakravortty, M.L.P. Reddy, T.R. Ramamohan, The synergistic extraction of thorium(IV) and uranium(VI) with mixtures of 3-phenyl-4-benzoyl-5-isoxazolone and crown ethers, Talanta, 51 (2000) 523–530.
  • Q. He, X. Chang, Q. Wu, X. Huang, Z. Hu, Y. Zhai, Synthesis and applications of surface-grafted Th(IV)-imprinted polymers for selective solid-phase extraction of thorium(IV), Anal. Chim. Acta, 605 (2007) 192-197.
  • C. Lin, H. Wang, Y. Wang, Z. Cheng, Selective solidphase extraction of trace thorium(IV) using surfacegrafted Th(IV)-imprinted polymers with pyrazole derivative, Talanta, 81 (2010) 30-36.
  • Y. Chen, Y. Wei , L. He, F. Tang, Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin, J. Chrom. A, 1466 (2016) 37-41.
  • S. Chandramouleeswaran, J. Ramkumar, n-Benzoyl-nphenylhydroxylamine impregnated Amberlite XAD-4 beads for selective removal of thorium, J. Haz. Mat., 280 (2014) 514-523.
  • M.A.A. Aslani, F. Celik, S. Yusan, C.R.K. Aslani, Assessment of the adsorption of thorium onto styrene–divinylbenzene-based resin: Optimization using central composite design and thermodynamic parameters, Pro. Saf. Enviro. Pro., 109 (2017) 192-202.
  • F. Khalili, G. Al-Banna, Adsorption of uranium(VI) and thorium(IV) by insolubilized humic acid from Ajloun soil e Jordan, J. Enviro. Radio., 146 (2015) 16-26.
  • S. Buyuktiryaki, R. Say, A. Ersoz, E. Birlik, A. Denizli, Selective preconcentration of thorium in the presence of UO2 2+, Ce3+ and La3+ using Th(IV)-imprinted polymer, Talanta, 67 (2005) 640-645.
  • N. Bereli, D. Türkmen, K. Köse, A. Denizli, Glutamic acid containing supermacroporous poly(hydroxyethyl methacrylate) cryogel disks for UO2 2+ removal, Mat. Sci. Eng. C, 32 (2012) 2052-2059.
  • M.M. Yusoff, N. Rohani, N. Mostapa, M.S. Sarkar, T.K. Biswas, M.L. Rahman, S.E. Arshad, M.S. Sarjadi, A.D. Kulkarni, Synthesis of ion imprinted polymers for selective recognition and separation of rare earth metals, J. Rare Earths, 35 (2017) 177-185.
  • L. Uzun, R. Uzek, S. Şenel, R. Say, A. Denizli, Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporatedmolecularly imprinted fluorescent nanoparticles, Mat. Sci. Eng. C, 33 (2013) 3432-3439.
  • İ. Dolak, R. Keçili, D. Hür, A. Ersöz, R. Say, Ion-imprinted polymers for selective recognition of neodymium (III) in environmental samples, Ind. Eng. Chem. Res., 54 (2015) 5328-5335.
  • M. Gedikli, Ş. Ceylan, M. Erzengin, M. Odabaşı, A novel matrix for hydrophobic interaction chromatography and its application in lysozyme adsorption, Acta Biochim. Pol., 61 (2014) 731–737.
  • I. Göktürk, R. Üzek, L. Uzun, A. Denizli, Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles, Nanomedicine Biotech., 44 (2016) 1133–1140.
  • M. Odabaşı, G. Baydemir, M. Karatas, A. Derazshamshir, Preparation and characterization of metal-chelated poly(HEMA-MAH) monolithic cryogels and their use for DNA adsorption, J. App. Pol. Sci., 116 (2010) 1306– 1312.
  • K. Balamurugan, K. Gokulakrishnan, T. Prakasam, Preparation and evaluation of molecularly imprinted polymer liquid chromatography column for the separation of Cathine enantiomers, Saudi Pharm. J., 20 (2012) 53–61.
  • R. Say, E. Birlik, A. Ersöz, F. Yilmaz, T. Gedikbey, A. Denizli, Preconcentration of copper on ion-selective imprinted polymer microbeads, Anal. Chim. Acta. 480 (2003) 251–258.
  • E. Tamahkar, Adil Denizli, Metal ion coordination interactions for biomolecule recognition: a Review, Hittite J. Sci. and Eng., 2014, 1 21-26.
  • Y. Saylan, F. Yilmaz, E. Özgür, A. Derazshamshir, H. Yavuz, A. Denizli, Molecular imprinting of macromolecules for sensor applications, Sensors, 17 (2017) 1-30.
  • G. Vasapollo, R.D. Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly imprinted polymers: Present and future prospective, Int. J. Mol. Sci. 12 (2011) 5908–5945.
  • H.J. Monodispersed, molecularly imprinted polymers as affinity-based chromatography media, J. Chrom. B, 866 (2008) 3–13.
  • S. Wei, B. Mizaikoff, Recent advances on noncovalent molecular imprints for affinity separations, J. Sep. Sci., 30 (2007) 1794–1805.
  • M. Lasáková, P. Jandera, Molecularly imprinted polymers and their application in solid phase extraction, J. Sep. Sci., 32 (2009) 788–812
  • B. Sellergren, Imprinted chiral stationary phases in high-performance liquid chromatography, J. Chrom. A, 906 (2001) 227–252.
  • F. Puoci, F. Lemma, N. Picci, Stimuli-responsive molecularly imprinted polymers for drug delivery: A review, Curr. Drug Deliv., 5 (2008) 85–96.
  • A. Concheiro, Molecularly imprinted polymers for drug delivery, J Chrom. B, 804 (2004) 231-45.
  • G. Wulff, Enzyme-like catalysis by molecularly imprinted polymers, Chem. Rev., 102 (2002) 1–27.
  • S. Vidyasankar, F.H. Arnold, Molecular imprinting: Selective materials for separations, sensors and catalysis, Curr. Opin. Biotech., 6 (1995) 218–224.
  • G. Selvolini, G. Marrazza, MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination, Sensors, 17 (2017) 718-736.
  • B.D. Gupta, A.M. Shrivastav, S.P. Usha, Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting, Sensors, 16 (2016) 1381-1413.
  • S.M. Madhappan, K.T. Pradip, S.P. Sung, M. Aneesh, J.C. Hun, S.H. Chang, On-imprinted mesoporous silica hybrids for selective recognition of target metal ions, Micropor. Mesopor. Mat., 180 (2013) 162-171.
  • M. Monier, D.A. Abdel-Latif, Fabrication of Au(III) ionimprinted polymer based on thiol-modified chitosan, Int. J. Bio. Macro., 105 (2017) 777-787.
  • R. Msaadi, S. Ammar, M.M. Chehimi, Y. Yagci, Diazonium-based ion-imprinted polymer/clay nanocomposite for the selective extraction of lead(II) ions in aqueous media, Eur. Pol. J., 89 (2017) 367-380.
  • M. Monier, D.A. Abdel-Latif, Y.G. Abou El-Reash, Ion-imprinted modified chitosan resin for selective removal of Pd(II) ions, J. Col. Inter. Sci., 469 (2016) 344-354.
  • M. Roushani, S. Abbasi, H. Khani, R. Sahraei, Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions, Food Chem., 173 (2015) 266-273.
Year 2018, Volume: 46 Issue: 2, 187 - 197, 03.06.2018

Abstract

References

  • S.F. Ashley, G.T. Parks, W.J. Nuttall, C. Boxall, R.W. Grimes, Thorium fuel has risks, Nature, 492 (2012) 31–33.
  • Y.P. Du, Y.W.Zhang, Z.G. Yan, L.D. Sun, C.H. Yan, Highly luminescent self-organized sub-2-nm EuOF nanowires, J. Am. Chem. Soc., 131 (2009) 16364–16365.
  • B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, Z.H. Cheng, Recent progress in exploring magnetocaloric materials, Adv. Mater., 21 (2009) 4545–4564.
  • V.K. Jain, A. Handa, S.S. Sait, P. Shrivastav, Y.K. Agrawal, Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone, Anal. Chim. Acta, 429 (2001) 237–246.
  • I. Dolak, M. Karakaplan, B. Ziyadanoğulları, R. Ziyadanoğulları, Solvent extraction, preconcentration and determination of thorium with monoaza 18-Crown-6 derivative, Bul. Kor. Chem. Soc., 32 (2011) 1564-1568.
  • S.K. Sahu, V. Chakravortty, M.L.P. Reddy, T.R. Ramamohan, The synergistic extraction of thorium(IV) and uranium(VI) with mixtures of 3-phenyl-4-benzoyl-5-isoxazolone and crown ethers, Talanta, 51 (2000) 523–530.
  • Q. He, X. Chang, Q. Wu, X. Huang, Z. Hu, Y. Zhai, Synthesis and applications of surface-grafted Th(IV)-imprinted polymers for selective solid-phase extraction of thorium(IV), Anal. Chim. Acta, 605 (2007) 192-197.
  • C. Lin, H. Wang, Y. Wang, Z. Cheng, Selective solidphase extraction of trace thorium(IV) using surfacegrafted Th(IV)-imprinted polymers with pyrazole derivative, Talanta, 81 (2010) 30-36.
  • Y. Chen, Y. Wei , L. He, F. Tang, Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin, J. Chrom. A, 1466 (2016) 37-41.
  • S. Chandramouleeswaran, J. Ramkumar, n-Benzoyl-nphenylhydroxylamine impregnated Amberlite XAD-4 beads for selective removal of thorium, J. Haz. Mat., 280 (2014) 514-523.
  • M.A.A. Aslani, F. Celik, S. Yusan, C.R.K. Aslani, Assessment of the adsorption of thorium onto styrene–divinylbenzene-based resin: Optimization using central composite design and thermodynamic parameters, Pro. Saf. Enviro. Pro., 109 (2017) 192-202.
  • F. Khalili, G. Al-Banna, Adsorption of uranium(VI) and thorium(IV) by insolubilized humic acid from Ajloun soil e Jordan, J. Enviro. Radio., 146 (2015) 16-26.
  • S. Buyuktiryaki, R. Say, A. Ersoz, E. Birlik, A. Denizli, Selective preconcentration of thorium in the presence of UO2 2+, Ce3+ and La3+ using Th(IV)-imprinted polymer, Talanta, 67 (2005) 640-645.
  • N. Bereli, D. Türkmen, K. Köse, A. Denizli, Glutamic acid containing supermacroporous poly(hydroxyethyl methacrylate) cryogel disks for UO2 2+ removal, Mat. Sci. Eng. C, 32 (2012) 2052-2059.
  • M.M. Yusoff, N. Rohani, N. Mostapa, M.S. Sarkar, T.K. Biswas, M.L. Rahman, S.E. Arshad, M.S. Sarjadi, A.D. Kulkarni, Synthesis of ion imprinted polymers for selective recognition and separation of rare earth metals, J. Rare Earths, 35 (2017) 177-185.
  • L. Uzun, R. Uzek, S. Şenel, R. Say, A. Denizli, Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporatedmolecularly imprinted fluorescent nanoparticles, Mat. Sci. Eng. C, 33 (2013) 3432-3439.
  • İ. Dolak, R. Keçili, D. Hür, A. Ersöz, R. Say, Ion-imprinted polymers for selective recognition of neodymium (III) in environmental samples, Ind. Eng. Chem. Res., 54 (2015) 5328-5335.
  • M. Gedikli, Ş. Ceylan, M. Erzengin, M. Odabaşı, A novel matrix for hydrophobic interaction chromatography and its application in lysozyme adsorption, Acta Biochim. Pol., 61 (2014) 731–737.
  • I. Göktürk, R. Üzek, L. Uzun, A. Denizli, Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles, Nanomedicine Biotech., 44 (2016) 1133–1140.
  • M. Odabaşı, G. Baydemir, M. Karatas, A. Derazshamshir, Preparation and characterization of metal-chelated poly(HEMA-MAH) monolithic cryogels and their use for DNA adsorption, J. App. Pol. Sci., 116 (2010) 1306– 1312.
  • K. Balamurugan, K. Gokulakrishnan, T. Prakasam, Preparation and evaluation of molecularly imprinted polymer liquid chromatography column for the separation of Cathine enantiomers, Saudi Pharm. J., 20 (2012) 53–61.
  • R. Say, E. Birlik, A. Ersöz, F. Yilmaz, T. Gedikbey, A. Denizli, Preconcentration of copper on ion-selective imprinted polymer microbeads, Anal. Chim. Acta. 480 (2003) 251–258.
  • E. Tamahkar, Adil Denizli, Metal ion coordination interactions for biomolecule recognition: a Review, Hittite J. Sci. and Eng., 2014, 1 21-26.
  • Y. Saylan, F. Yilmaz, E. Özgür, A. Derazshamshir, H. Yavuz, A. Denizli, Molecular imprinting of macromolecules for sensor applications, Sensors, 17 (2017) 1-30.
  • G. Vasapollo, R.D. Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly imprinted polymers: Present and future prospective, Int. J. Mol. Sci. 12 (2011) 5908–5945.
  • H.J. Monodispersed, molecularly imprinted polymers as affinity-based chromatography media, J. Chrom. B, 866 (2008) 3–13.
  • S. Wei, B. Mizaikoff, Recent advances on noncovalent molecular imprints for affinity separations, J. Sep. Sci., 30 (2007) 1794–1805.
  • M. Lasáková, P. Jandera, Molecularly imprinted polymers and their application in solid phase extraction, J. Sep. Sci., 32 (2009) 788–812
  • B. Sellergren, Imprinted chiral stationary phases in high-performance liquid chromatography, J. Chrom. A, 906 (2001) 227–252.
  • F. Puoci, F. Lemma, N. Picci, Stimuli-responsive molecularly imprinted polymers for drug delivery: A review, Curr. Drug Deliv., 5 (2008) 85–96.
  • A. Concheiro, Molecularly imprinted polymers for drug delivery, J Chrom. B, 804 (2004) 231-45.
  • G. Wulff, Enzyme-like catalysis by molecularly imprinted polymers, Chem. Rev., 102 (2002) 1–27.
  • S. Vidyasankar, F.H. Arnold, Molecular imprinting: Selective materials for separations, sensors and catalysis, Curr. Opin. Biotech., 6 (1995) 218–224.
  • G. Selvolini, G. Marrazza, MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination, Sensors, 17 (2017) 718-736.
  • B.D. Gupta, A.M. Shrivastav, S.P. Usha, Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting, Sensors, 16 (2016) 1381-1413.
  • S.M. Madhappan, K.T. Pradip, S.P. Sung, M. Aneesh, J.C. Hun, S.H. Chang, On-imprinted mesoporous silica hybrids for selective recognition of target metal ions, Micropor. Mesopor. Mat., 180 (2013) 162-171.
  • M. Monier, D.A. Abdel-Latif, Fabrication of Au(III) ionimprinted polymer based on thiol-modified chitosan, Int. J. Bio. Macro., 105 (2017) 777-787.
  • R. Msaadi, S. Ammar, M.M. Chehimi, Y. Yagci, Diazonium-based ion-imprinted polymer/clay nanocomposite for the selective extraction of lead(II) ions in aqueous media, Eur. Pol. J., 89 (2017) 367-380.
  • M. Monier, D.A. Abdel-Latif, Y.G. Abou El-Reash, Ion-imprinted modified chitosan resin for selective removal of Pd(II) ions, J. Col. Inter. Sci., 469 (2016) 344-354.
  • M. Roushani, S. Abbasi, H. Khani, R. Sahraei, Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions, Food Chem., 173 (2015) 266-273.
There are 40 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

İbrahim Dolak

Publication Date June 3, 2018
Acceptance Date March 3, 2018
Published in Issue Year 2018 Volume: 46 Issue: 2

Cite

APA Dolak, İ. (2018). Selective Separation and Preconcentration of Thorium(IV) in Bastnaesite Ore Using Thorium(IV)-Imprinted Cryogel Polymer. Hacettepe Journal of Biology and Chemistry, 46(2), 187-197.
AMA Dolak İ. Selective Separation and Preconcentration of Thorium(IV) in Bastnaesite Ore Using Thorium(IV)-Imprinted Cryogel Polymer. HJBC. June 2018;46(2):187-197.
Chicago Dolak, İbrahim. “Selective Separation and Preconcentration of Thorium(IV) in Bastnaesite Ore Using Thorium(IV)-Imprinted Cryogel Polymer”. Hacettepe Journal of Biology and Chemistry 46, no. 2 (June 2018): 187-97.
EndNote Dolak İ (June 1, 2018) Selective Separation and Preconcentration of Thorium(IV) in Bastnaesite Ore Using Thorium(IV)-Imprinted Cryogel Polymer. Hacettepe Journal of Biology and Chemistry 46 2 187–197.
IEEE İ. Dolak, “Selective Separation and Preconcentration of Thorium(IV) in Bastnaesite Ore Using Thorium(IV)-Imprinted Cryogel Polymer”, HJBC, vol. 46, no. 2, pp. 187–197, 2018.
ISNAD Dolak, İbrahim. “Selective Separation and Preconcentration of Thorium(IV) in Bastnaesite Ore Using Thorium(IV)-Imprinted Cryogel Polymer”. Hacettepe Journal of Biology and Chemistry 46/2 (June 2018), 187-197.
JAMA Dolak İ. Selective Separation and Preconcentration of Thorium(IV) in Bastnaesite Ore Using Thorium(IV)-Imprinted Cryogel Polymer. HJBC. 2018;46:187–197.
MLA Dolak, İbrahim. “Selective Separation and Preconcentration of Thorium(IV) in Bastnaesite Ore Using Thorium(IV)-Imprinted Cryogel Polymer”. Hacettepe Journal of Biology and Chemistry, vol. 46, no. 2, 2018, pp. 187-9.
Vancouver Dolak İ. Selective Separation and Preconcentration of Thorium(IV) in Bastnaesite Ore Using Thorium(IV)-Imprinted Cryogel Polymer. HJBC. 2018;46(2):187-9.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc