Research Article
BibTex RIS Cite
Year 2019, Volume: 47 Issue: 1, 7 - 15, 01.02.2019

Abstract

References

  • 1. L. Alesssandri, D. Ouellette, A . A cquah, M. Rieser, D. LeBlond, M. Saltarelli, C. Radziejewski, T. Fujimori, I. Correia, Increased serum clearance of oligomannose species present on a human IgG1 molecule, MAbs, 4 (2012) 509-520.
  • 2. H.H. Wolf, S.V. Davies,M. Borte, M.T. Caulier, P.E.Williams, H.V. Bernuth,W. Egner, I. Sklenan, C. Adams, P. Spath, A. Morell, I. Andersen, Efficacy, tolerability, safety and pharmacokinetics of nanofiltered intravenous immunoglobulins: studies in patients with immune thrombocytopenic purpura and primary immunodeficiencies, Vox Sang., 84 (2003) 45–53.
  • 3. H.M. Gurcan, A.R. Ahmed, Efficacy of various intravenous immunoglobulin therapy protocols in autoimmune and chronic inflammatory disorders, Ann. Pharmacother., 41 (2007) 812–823.
  • 4. W.R. Hogrefe, R. Moore, M. Lape-Nixon, M. Wagner, H. E. Prince, Performance of immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays using a West Nile Virus recombinant antigen (preM/E) for detection of West Nile Virus- and Other Flavivirus-specific antibodies, J. Clin. Microbiol., 42 (2004) 4641-4648.
  • 5. A. Bischof Delaloye, B. Delaloye, Tumor imaging with monoclonal antibodies, Semin. Nucl. Med., 25 (1995) 144- 164.
  • 6. P. Miroslav, Monoclonal and polyclonal antibodies production-preparation of potent biorecognition element, J. Appl. Biomed., 7 (2009) 115-121.
  • 7. K.Welbeck, P. Leonard, N. Gilmartin, B. Byrne, C. Viguier, A. S,R.O. Kennedy, Generation of an anti-NAGase single chain antibody and its application in a biosensor based assay for the detection of NAGase in milk, J. Immunol. Method., 364 (2011) 14-20.
  • 8. L. Uzun, D. Türkmen, V. Karakoç, H. Yavuz, A. Denizli, Performance of protein-A-based affinity membranes for antibody purification, J. Biomater Sci., 22 (2011) 2325-2341
  • 9. S. Çulha, C. Armutcu, L. Uzun, S. Şenel, A. Denizli, Synthesis of L-lysine imprinted cryogels for immunoglobulin G adsorption, Mater. Sci. Eng. C, 52 (2015) 315-324.
  • 10. W.W. Zhao, F.F. Liu, Q.H. Shia, X.Y. Dong, Y. Sun, Biomimetic design of affinity peptide ligands for human IgG based on protein A-IgG complex, Biochem. Eng. J., 88 (2014) 1-11.
  • 11. H. Alkan, N. Bereli, Z. Baysal, A. Denizli, Antibody purification with protein A attached supermacroporous poly(hydroxyethyl methacrylate) cryogel, Biochem. Eng. J., 45 (2009) 201-208
  • 12. R.J. Gui, H. Jin, H.J. Guo, Z.H. Wang, Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors, Biosens. Bioelectron., 100 (2018) 56-70.
  • 13. R. Keçili, R. Say, A. Ersöz, D. Hür, A. Denizli, Investigation of synthetic lipase and its use in transesterification reactions, Polymer, 53 (2012) 1981-1984.
  • 14. O.A. Attallah, M.A. Al-Ghobashy, A.T. Ayoub, M. Nebsen, Magnetic molecularly imprinted polymer nanoparticles for simultaneous extraction and determination of 6-mercaptopurine and its active metabolite thioguanine in human plasma, J. Chromatogr. A., 1561 (2018) 28-38.
  • 15.B. Sellergren, Molecularly imprinted polymers: man-made mimics of antibodies and their application in analytical chemistry: techniques and instrumentation in analytical chemistry, Elsevier Science, Amsterdam, The Netherlands, 2001.
  • 16. D.R. Kryscioa, N.A. Peppas, Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater., 8 (2012) 461-473.
  • 17. W.J. Cheong, S.H. Yang, F. Ali, Molecular imprinted polymers for separation science: A review of reviews, J. Sep. Sci., 36 (2013) 609-628.
  • 18. G. Vasapollo, R. Del Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly imprinted polymers: Present and future prospective, Int. J. Mol. Sci., 12 (2011) 5908-5945.
  • 19. R. Keçili, A. Özcan Atılır, A. Ersöz, D. Hür, A. Denizli, R. Say, Superparamagnetic nanotraps containing MIP based mimic lipase for biotransformations uses, J. Nanopart. Res., 13 (2011) 2073-2079.
  • 20. S.E. Diltemiz, R Keçili, A Ersöz, R Say, Molecular imprinting technology in quartz crystal microbalance (QCM) sensors, Sensors, 17 (2017) 454.
  • 21. J. Kupai, M. Razali, S. Büyüktiryaki, R. Keçili, G. Szekely, Longterm stability and reusability of molecularly imprinted polymers, Polym. Chem., 8 (2017) 666-673.
  • 22. G.Z. Kyzas, D.N. Bikiaris, Characterization of binding properties of silver ion-imprinted polymers with equilibrium and kinetic models, J. Mol. Liq., 212 (2015) 133-141.
  • 23. G.Z. Kyzas , S.G. Nanaki, A.Koltsakidou, M. Papageorgiou , M. Kechagia, D.N. Bikiaris, D.A. Lambropoulou, Effectively designed molecularly imprinted polymers for selective isolation of the antidiabetic drug metformin and its transformation product guanylurea from aqueous media, Anal. Chim. Acta, 866 (2015) 27-40.
  • 24. Z. Terzopoulou, M. Papageorgiou, G.Z. Kyzas, D.N. Bikiaris, D. A. Lambropoulou, Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices, Anal. Chim. Acta, 913 (2016) 63-75.
  • 25. C. Wierzbicka, S.B. Torsetnes, O.N. Jensen, S. Shinde, B. Sellergren, Hierarchically templated beads with tailored pore structure for phosphopeptide capture and phosphoproteomics, RSC Adv., 7 (2017) 17154-17163.
  • 26. R.Sulc, G. Szekely, S. Shinde, C. Wierzbicka, F. Vilela, D. Bauer, B. Sellergren, Phospholipid imprinted polymers as selective endotoxin scavengers, Sci. Rep., 7 (2017) 44299.
  • 27. M.H Lee, J. L. Thomas, C.L. Liao, S. Jurcevic, T. Crnogorac- Jurcevic, H.Y. Lin, Epitope recognition of peptide-imprinted polymers for regenerating protein 1 (REG1), Sep. Purif. Technol., 192 (2018) 213-219.
  • 28. K.J. Jetzschmann, A. Yarman, L. Rustam, P. Kielb, V.B. Urlacher, A. Fischer, I.M. Weidinger, U. Wollenberger, F.W. Scheller, Molecular LEGO by domain-imprinting of cytochrome P450 BM3, Colloids Surf B Biointerfaces, 164 (2018) 240-246.
  • 29. A.A. Topçu, N. Bereli, İ. Albayrak, A. Denizli, Creatinine imprinted poly (hydroxyethyl methacrylate) based cryogel cartridges, J. Macromol. Sci. Part A, 54 (2017) 495-501.
  • 30. K. Çetin, H. Alkan, N Bereli, A. Denizli, Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci. Part A, 54 (2017) 502-508.
  • 31. S. Akgönüllü, H Yavuz, A Denizli, Preparation of imprinted cryogel cartridge for chiral separation of l-phenylalanine, Artif Cells Nanomed Biotechnol., 45 (2017) 800-807.
  • 32. G. Ertürk, B. Mattiasson, Cryogels-versatile tools in bioseparation, J. Chromatogr. A, 2357 (2014) 24-35.

Mannose Imprinted Affinity Cryogels for Immunoglobulin G Binding

Year 2019, Volume: 47 Issue: 1, 7 - 15, 01.02.2019

Abstract

The design, preparation and characterization of mannose imprinted cryogels for the detection of immunoglobulin G (IgG) in aqueous solutions were carried out. Methacryloylamido phenylboronic acid (MAPBA) was used as the functional monomer since its boronic acid moiety has ability to interact with mannose groups on the Fc region of IgG. Free radical cryo-polymerization technique was used for the preparation of mannose imprinted affinity cryogels towards IgG. The effects of medium pH, IgG concentration, ionic strength and flow rate on the IgG binding were investigated. The maximum IgG binding was achieved as 61.7 mgg-1 at pH 8.0. The prepared mannose imprinted cryogels exhibited excellent selectivity towards IgG in the existence of albumin and hemoglobin. Also, the result showed that the prepared cryogels preserved their stability even after 10 binding-desorption cycles.

References

  • 1. L. Alesssandri, D. Ouellette, A . A cquah, M. Rieser, D. LeBlond, M. Saltarelli, C. Radziejewski, T. Fujimori, I. Correia, Increased serum clearance of oligomannose species present on a human IgG1 molecule, MAbs, 4 (2012) 509-520.
  • 2. H.H. Wolf, S.V. Davies,M. Borte, M.T. Caulier, P.E.Williams, H.V. Bernuth,W. Egner, I. Sklenan, C. Adams, P. Spath, A. Morell, I. Andersen, Efficacy, tolerability, safety and pharmacokinetics of nanofiltered intravenous immunoglobulins: studies in patients with immune thrombocytopenic purpura and primary immunodeficiencies, Vox Sang., 84 (2003) 45–53.
  • 3. H.M. Gurcan, A.R. Ahmed, Efficacy of various intravenous immunoglobulin therapy protocols in autoimmune and chronic inflammatory disorders, Ann. Pharmacother., 41 (2007) 812–823.
  • 4. W.R. Hogrefe, R. Moore, M. Lape-Nixon, M. Wagner, H. E. Prince, Performance of immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays using a West Nile Virus recombinant antigen (preM/E) for detection of West Nile Virus- and Other Flavivirus-specific antibodies, J. Clin. Microbiol., 42 (2004) 4641-4648.
  • 5. A. Bischof Delaloye, B. Delaloye, Tumor imaging with monoclonal antibodies, Semin. Nucl. Med., 25 (1995) 144- 164.
  • 6. P. Miroslav, Monoclonal and polyclonal antibodies production-preparation of potent biorecognition element, J. Appl. Biomed., 7 (2009) 115-121.
  • 7. K.Welbeck, P. Leonard, N. Gilmartin, B. Byrne, C. Viguier, A. S,R.O. Kennedy, Generation of an anti-NAGase single chain antibody and its application in a biosensor based assay for the detection of NAGase in milk, J. Immunol. Method., 364 (2011) 14-20.
  • 8. L. Uzun, D. Türkmen, V. Karakoç, H. Yavuz, A. Denizli, Performance of protein-A-based affinity membranes for antibody purification, J. Biomater Sci., 22 (2011) 2325-2341
  • 9. S. Çulha, C. Armutcu, L. Uzun, S. Şenel, A. Denizli, Synthesis of L-lysine imprinted cryogels for immunoglobulin G adsorption, Mater. Sci. Eng. C, 52 (2015) 315-324.
  • 10. W.W. Zhao, F.F. Liu, Q.H. Shia, X.Y. Dong, Y. Sun, Biomimetic design of affinity peptide ligands for human IgG based on protein A-IgG complex, Biochem. Eng. J., 88 (2014) 1-11.
  • 11. H. Alkan, N. Bereli, Z. Baysal, A. Denizli, Antibody purification with protein A attached supermacroporous poly(hydroxyethyl methacrylate) cryogel, Biochem. Eng. J., 45 (2009) 201-208
  • 12. R.J. Gui, H. Jin, H.J. Guo, Z.H. Wang, Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors, Biosens. Bioelectron., 100 (2018) 56-70.
  • 13. R. Keçili, R. Say, A. Ersöz, D. Hür, A. Denizli, Investigation of synthetic lipase and its use in transesterification reactions, Polymer, 53 (2012) 1981-1984.
  • 14. O.A. Attallah, M.A. Al-Ghobashy, A.T. Ayoub, M. Nebsen, Magnetic molecularly imprinted polymer nanoparticles for simultaneous extraction and determination of 6-mercaptopurine and its active metabolite thioguanine in human plasma, J. Chromatogr. A., 1561 (2018) 28-38.
  • 15.B. Sellergren, Molecularly imprinted polymers: man-made mimics of antibodies and their application in analytical chemistry: techniques and instrumentation in analytical chemistry, Elsevier Science, Amsterdam, The Netherlands, 2001.
  • 16. D.R. Kryscioa, N.A. Peppas, Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater., 8 (2012) 461-473.
  • 17. W.J. Cheong, S.H. Yang, F. Ali, Molecular imprinted polymers for separation science: A review of reviews, J. Sep. Sci., 36 (2013) 609-628.
  • 18. G. Vasapollo, R. Del Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly imprinted polymers: Present and future prospective, Int. J. Mol. Sci., 12 (2011) 5908-5945.
  • 19. R. Keçili, A. Özcan Atılır, A. Ersöz, D. Hür, A. Denizli, R. Say, Superparamagnetic nanotraps containing MIP based mimic lipase for biotransformations uses, J. Nanopart. Res., 13 (2011) 2073-2079.
  • 20. S.E. Diltemiz, R Keçili, A Ersöz, R Say, Molecular imprinting technology in quartz crystal microbalance (QCM) sensors, Sensors, 17 (2017) 454.
  • 21. J. Kupai, M. Razali, S. Büyüktiryaki, R. Keçili, G. Szekely, Longterm stability and reusability of molecularly imprinted polymers, Polym. Chem., 8 (2017) 666-673.
  • 22. G.Z. Kyzas, D.N. Bikiaris, Characterization of binding properties of silver ion-imprinted polymers with equilibrium and kinetic models, J. Mol. Liq., 212 (2015) 133-141.
  • 23. G.Z. Kyzas , S.G. Nanaki, A.Koltsakidou, M. Papageorgiou , M. Kechagia, D.N. Bikiaris, D.A. Lambropoulou, Effectively designed molecularly imprinted polymers for selective isolation of the antidiabetic drug metformin and its transformation product guanylurea from aqueous media, Anal. Chim. Acta, 866 (2015) 27-40.
  • 24. Z. Terzopoulou, M. Papageorgiou, G.Z. Kyzas, D.N. Bikiaris, D. A. Lambropoulou, Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices, Anal. Chim. Acta, 913 (2016) 63-75.
  • 25. C. Wierzbicka, S.B. Torsetnes, O.N. Jensen, S. Shinde, B. Sellergren, Hierarchically templated beads with tailored pore structure for phosphopeptide capture and phosphoproteomics, RSC Adv., 7 (2017) 17154-17163.
  • 26. R.Sulc, G. Szekely, S. Shinde, C. Wierzbicka, F. Vilela, D. Bauer, B. Sellergren, Phospholipid imprinted polymers as selective endotoxin scavengers, Sci. Rep., 7 (2017) 44299.
  • 27. M.H Lee, J. L. Thomas, C.L. Liao, S. Jurcevic, T. Crnogorac- Jurcevic, H.Y. Lin, Epitope recognition of peptide-imprinted polymers for regenerating protein 1 (REG1), Sep. Purif. Technol., 192 (2018) 213-219.
  • 28. K.J. Jetzschmann, A. Yarman, L. Rustam, P. Kielb, V.B. Urlacher, A. Fischer, I.M. Weidinger, U. Wollenberger, F.W. Scheller, Molecular LEGO by domain-imprinting of cytochrome P450 BM3, Colloids Surf B Biointerfaces, 164 (2018) 240-246.
  • 29. A.A. Topçu, N. Bereli, İ. Albayrak, A. Denizli, Creatinine imprinted poly (hydroxyethyl methacrylate) based cryogel cartridges, J. Macromol. Sci. Part A, 54 (2017) 495-501.
  • 30. K. Çetin, H. Alkan, N Bereli, A. Denizli, Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci. Part A, 54 (2017) 502-508.
  • 31. S. Akgönüllü, H Yavuz, A Denizli, Preparation of imprinted cryogel cartridge for chiral separation of l-phenylalanine, Artif Cells Nanomed Biotechnol., 45 (2017) 800-807.
  • 32. G. Ertürk, B. Mattiasson, Cryogels-versatile tools in bioseparation, J. Chromatogr. A, 2357 (2014) 24-35.
There are 32 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Rüstem Keçili

Publication Date February 1, 2019
Acceptance Date February 22, 2019
Published in Issue Year 2019 Volume: 47 Issue: 1

Cite

APA Keçili, R. (2019). Mannose Imprinted Affinity Cryogels for Immunoglobulin G Binding. Hacettepe Journal of Biology and Chemistry, 47(1), 7-15.
AMA Keçili R. Mannose Imprinted Affinity Cryogels for Immunoglobulin G Binding. HJBC. February 2019;47(1):7-15.
Chicago Keçili, Rüstem. “Mannose Imprinted Affinity Cryogels for Immunoglobulin G Binding”. Hacettepe Journal of Biology and Chemistry 47, no. 1 (February 2019): 7-15.
EndNote Keçili R (February 1, 2019) Mannose Imprinted Affinity Cryogels for Immunoglobulin G Binding. Hacettepe Journal of Biology and Chemistry 47 1 7–15.
IEEE R. Keçili, “Mannose Imprinted Affinity Cryogels for Immunoglobulin G Binding”, HJBC, vol. 47, no. 1, pp. 7–15, 2019.
ISNAD Keçili, Rüstem. “Mannose Imprinted Affinity Cryogels for Immunoglobulin G Binding”. Hacettepe Journal of Biology and Chemistry 47/1 (February 2019), 7-15.
JAMA Keçili R. Mannose Imprinted Affinity Cryogels for Immunoglobulin G Binding. HJBC. 2019;47:7–15.
MLA Keçili, Rüstem. “Mannose Imprinted Affinity Cryogels for Immunoglobulin G Binding”. Hacettepe Journal of Biology and Chemistry, vol. 47, no. 1, 2019, pp. 7-15.
Vancouver Keçili R. Mannose Imprinted Affinity Cryogels for Immunoglobulin G Binding. HJBC. 2019;47(1):7-15.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc