Research Article
BibTex RIS Cite
Year 2021, Volume: 49 Issue: 1, 11 - 23, 01.01.2021
https://doi.org/10.15671/hjbc.680371

Abstract

References

  • [1] P. Wang, E. Lombi, F.-J. Zhao, P.M. Kopittke, Nanotechnology: A New Opportunity in Plant Sciences, Trends Plant Sci., 21 (2016) 699–712. [2] T. Khan, P. Gurav, PhytoNanotechnology: Enhancing the delivery of plant-based anti-cancer drugs, Front. Pharmacol., (2018). [3] P. Mohammadi, M. Hesari, H. Samadian, M. Hajialyani, Z. Bayrami, M.H. Farzaei, M. Abdollahi, Recent advancements and new perspectives of phytonanotechnology, in: Compr. Anal. Chem., 2019. [4] P. Agarwal, R. Gupta, N. Agarwal, Advances in Synthesis and Applications of Microalgal Nanoparticles for Wastewater Treatment, J. Nanotechnol., 2019 (2019) 1–9. [5] R. Rajan, K. Chandran, S.L. Harper, S.-I. Yun, P.T. Kalaichelvan, Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials, Ind. Crops Prod., 70 (2015) 356–373. [6] H.R. Ghorbani, Green synthesis of gold nanoparticles, Orient. J. Chem., 31 (2015) 303–305. [7] P. Rajoriya, P. Misra, V.K. Singh, P.K. Shukla, P.W. Ramteke, Green Synthesis of Silver Nanoparticles, Biotech Today An Int. J. Biol. Sci. (2017). [8] K.S. Siddiqi, A. Husen, Green Synthesis, Characterization, and Uses of Palladium/Platinum Nanoparticles, Nanoscale Res. Lett., (2016). [9] A. Asha, Green Synthesis of Silver Nanoparticle from Different Plants– A Review, Int. J. Pure Appl. Biosci., 4 (2016) 118–124. [10] A.J. Haes, R.P. Van Duyne, A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc., (2002). [11] L. Sintubin, W. Verstraete, N. Boon, Biologically produced nanosilver: Current state and future perspectives, Biotechnol. Bioeng., (2012). [12] J. Lin, C. He, Y. Zhao, S. Zhang, One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor, Sensors Actuators, B Chem., 137 (2009) 768–773. [13] L. Mahmudin, E. Suharyadi, A.B.S. Utomo, K. Abraha, Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance (SPR)-Based Biosensor Applications, J. Mod. Phys., (2015). [14] X. Ren, X. Meng, D. Chen, F. Tang, J. Jiao, Using silver nanoparticle to enhance current response of biosensor, Biosens. Bioelectron., (2005). [15] K. Ueno, Y. Yokota, S. Juodkazis, V. Mizeikis, H. Misawa, Nano-Structured Materials in Plasmonics and Photonics, Curr. Nanosci., (2008). [16] P. Akhter, M. Huang, W. Spratt, N. Kadakia, F. Amir, Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications, J. Appl. Phys., 117 (2015). [17] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide, J. Am. Chem. Soc., 130 (2008) 1676–1680. [18] S. Sarina, E.R. Waclawik, H. Zhu, Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation, Green Chem., (2013). [19] E. Grabowska, A. Zaleska, S. Sorgues, M. Kunst, A. Etcheberry, C. Colbeau-Justin, H. Remita, Modification of titanium(IV) dioxide with small silver nanoparticles: Application in photocatalysis, J. Phys. Chem. C, 117 (2013) 1955–1962. [20] P.D. Cozzoli, R. Comparelli, E. Fanizza, M.L. Curri, A. Agostiano, D. Laub, Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO 2 Nanorods: A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution, J. Am. Chem. Soc., 126 (2004) 3868–3879. [21] J. Jain, S. Arora, J.M. Rajwade, P. Omray, S. Khandelwal, K.M. Paknikar, Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use, in: Mol. Pharm., 2009: pp. 1388–1401. [22] G.D. Mogoşanu, A.M. Grumezescu, C. Bejenaru, L.E. Bejenaru, Polymeric protective agents for nanoparticles in drug delivery and targeting, Int. J. Pharm., 510 (2016) 419–429. [23] M. Rai, A.P. Ingle, P. Paralikar, I. Gupta, S. Medici, C.A. Santos, Recent advances in use of silver nanoparticles as antimalarial agents, Int. J. Pharm., 526 (2017) 254–270. [24] N. Lochner, C. Lobmaier, M. Wirth, A. Leitner, F. Pittner, F. Gabor, Silver nanoparticle enhanced immunoassays: One step real time kinetic assay for insulin in serum, Eur. J. Pharm. Biopharm., 56 (2003) 469–477. [25] L. Pinďáková, V. Kašpárková, K. Kejlová, M. Dvořáková, D. Krsek, D. Jírová, L. Kašparová, Behaviour of silver nanoparticles in simulated saliva and gastrointestinal fluids, Int. J. Pharm., 527 (2017) 12–20. [26] K. Kejlová, V. Kašpárková, D. Krsek, D. Jírová, H. Kolářová, M. Dvořáková, K. Tománková, V. Mikulcová, Characteristics of silver nanoparticles in vehicles for biological applications, Int. J. Pharm., 496 (2015) 878–885. [27] M. Torres-Cisneros, C. Velásquez-Ordónez, J. Sánchez-Mondragón, A. Campero, O.G. Ibarra-Manzano, D.A. May-Arrioja, H. Plascencia-Mora, A. Espinoza-Calderón, I. Sukhoivanov, Synthesis and optical characterization of Ag0 nanoparticles, Microelectronics J., (2009). [28] H.A. Alarifi, M. Atis, C. Özdoǧan, A. Hu, M. Yavuz, Y. Zhou, Molecular dynamics simulation of sintering and surface premelting of silver nanoparticles, Mater. Trans., 54 (2013) 884–889. [29] M. Torres-Cisneros, N. Yanagihara, B. Gonzalez-Rolon, M.A. Meneses-Nava, O.G. Ibarra-Manzano, D.A. May-Arrioja, J. Sánchez-Mondragón, E. Aguilera-Gómez, L.A. Aguilera-Cortés, Synthesis and nonlinear optical behavior of Ag nanoparticles in PMMA, Microelectronics J., (2009). [30] S. Thakur, K.M. G., S.R. M., Plant-Mediated Synthesis of Silver Nanoparticles – A Critical Review, Int. J. Pharmacogn. Phytochem. Res., (2018). [31] M. Nakamoto, M. Yamamoto, Y. Kashiwagi, H. Kakiuchi, T. Tsujimoto, Y. Yoshida, A variety of silver nanoparticle pastes for fine electronic circuit pattern formation, in: 6th Int. IEEE Conf. Polym. Adhes. Microelectron. Photonics, Polytronic 2007, Proc., 2007. [32] A. Panáček, M. Kolář, R. Večeřová, R. Prucek, J. Soukupová, V. Kryštof, P. Hamal, R. Zbořil, L. Kvítek, Antifungal activity of silver nanoparticles against Candida spp, Biomaterials, 30 (2009) 6333–6340. [33] J. Lee, K.-J. Kim, W. Sang, J. Guk, D. Gun, The Silver Nanoparticle (Nano-Ag): a New Model for Antifungal Agents, in: Silver Nanoparticles, 2010. [34] Y.K. Jo, B.H. Kim, G. Jung, Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi, Plant Dis., 93 (2009) 1037–1043. [35] J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Antimicrobial effects of silver nanoparticles, Nanomedicine Nanotechnology, Biol. Med., 3 (2007) 95–101. [36] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 27 (2009) 76–83. [37] N. Durán, M. Durán, M.B. de Jesus, A.B. Seabra, W.J. Fávaro, G. Nakazato, Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity, Nanomedicine Nanotechnology, Biol. Med., 12 (2016) 789–799. [38] V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci., (2009). [39] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: A case study on E coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., (2004). [40] S. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra, M. Galdiero, Silver nanoparticles as potential antiviral agents, Molecules, 16 (2011) 8894–8918. [41] H.H. Lara, E.N. Garza-Treviño, L. Ixtepan-Turrent, D.K. Singh, Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds, J. Nanobiotechnology, 9 (2011). [42] H.H. Lara, N. V. Ayala-Nuñez, L. Ixtepan-Turrent, C. Rodriguez-Padilla, Mode of antiviral action of silver nanoparticles against HIV-1, J. Nanobiotechnology, 8 (2010). [43] S. Park, H.H. Park, S.Y. Kim, S.J. Kim, K. Woo, G. Ko, Antiviral Properties of Silver Nanoparticles on a Magnetic Hybrid Colloid, Appl. Environ. Microbiol., (2014). [44] P. Orlowski, E. Tomaszewska, M. Gniadek, P. Baska, J. Nowakowska, J. Sokolowska, Z. Nowak, M. Donten, G. Celichowski, J. Grobelny, M. Krzyzowska, Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection, PLoS One, (2014). [45] C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, C.-M. Che, Silver nanoparticles: partial oxidation and antibacterial activities, JBIC J. Biol. Inorg. Chem., 12 (2007) 527–534. [46] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, M.J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology, 16 (2005) 2346–2353. [47] G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver nanoparticles as potential antibacterial agents, Molecules, 20 (2015) 8856–8874. [48] P. Van Dong, C.H. Ha, L.T. Binh, J. Kasbohm, Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles, Int. Nano Lett., (2012). [49] B. Le Ouay, F. Stellacci, Antibacterial activity of silver nanoparticles: A surface science insight, Nano Today, 10 (2015) 339–354. [50] S. Gurunathan, K.J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan, S.H. Eom, Antiangiogenic properties of silver nanoparticles, Biomaterials, 30 (2009) 6341–6350. [51] K.K.Y. Wong, S.O.F. Cheung, L. Huang, J. Niu, C. Tao, C.M. Ho, C.M. Che, P.K.H. Tam, Further evidence of the anti-inflammatory effects of silver nanoparticles, ChemMedChem, 4 (2009) 1129–1135. [52] L. David, B. Moldovan, A. Vulcu, L. Olenic, M. Perde-Schrepler, E. Fischer-Fodor, A. Florea, M. Crisan, I. Chiorean, S. Clichici, G.A. Filip, Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract, Colloids Surfaces B Biointerfaces, 122 (2014) 767–777. [53] H. Mohamed El-Rafie, M. Abdel-Aziz Hamed, Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species, Adv. Nat. Sci. Nanosci. Nanotechnol., 5 (2014). [54] R. Sankar, A. Karthik, A. Prabu, S. Karthik, K.S. Shivashangari, V. Ravikumar, Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity, Colloids Surfaces B Biointerfaces, 108 (2013) 80–84. [55] M. Rai, K. Kon, A. Ingle, N. Duran, S. Galdiero, M. Galdiero, Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects, Appl. Microbiol. Biotechnol., 98 (2014) 1951–1961. [56] D. Nayak, S. Pradhan, S. Ashe, P.R. Rauta, B. Nayak, Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma, J. Colloid Interface Sci., 457 (2015) 329–338. [57] H. Sharma, P.K. Mishra, S. Talegaonkar, B. Vaidya, Metal nanoparticles: A theranostic nanotool against cancer, Drug Discov. Today, 20 (2015) 1143–1151. [58] V. Kathiravan, S. Ravi, S. Ashokkumar, Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 130 (2014) 116–121. [59] S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise, J. Adv. Res., 7 (2016) 17–28. [60] D. MubarakAli, N. Thajuddin, K. Jeganathan, M. Gunasekaran, Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens, Colloids Surfaces B Biointerfaces, 85 (2011) 360–365. [61] P. Logeswari, S. Silambarasan, J. Abraham, Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property, J. Saudi Chem. Soc., 19 (2015) 311–317. [62] S. Prabhu, E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett., 2 (2012). [63] J.Y. Song, B.S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess Biosyst. Eng., 32 (2009) 79–84. [64] N.G. Bastús, F. Merkoçi, J. Piella, V. Puntes, Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties, Chem. Mater., 26 (2014) 2836–2846. [65] X. Dong, X. Ji, H. Wu, L. Zhao, J. Li, W. Yang, Shape control of silver nanoparticles by stepwise citrate reduction, J. Phys. Chem. C, 113 (2009) 6573–6576. [66] K.C. Song, S.M. Lee, T.S. Park, B.S. Lee, Preparation of colloidal silver nanoparticles by chemical reduction method, Korean J. Chem. Eng., 26 (2009) 153–155. [67] F. Mehr, M. Khanjani, P. Vatani, Synthesis of Nano-Ag particles using Sodium Borohydride, Orient. J. Chem., 31 (2015) 1831–1833. [68] K.D. Bhatte, K.M. Deshmukh, Y.P. Patil, D.N. Sawant, S.-I. Fujita, M. Arai, B.M. Bhanage, Synthesis of powdered silver nanoparticles using hydrogen in aqueous medium, Particuology, 10 (2012) 140–143. [69] C.D. Kane, R.L. Jasoni, E.P. Peffley, L.D. Thompson, C.J. Green, P. Pare, D. Tissue, Nutrient solution and solution pH influences on onion growth and mineral content, J. Plant Nutr., 29 (2006) 375–390. [70] S. Kuunal, S. Kutti, M. Guha, P. Rauwel, D. Wragg, G. Nurk, E. Rauwel, Silver Nanoparticles Study for Application in Green Housing, ECS Trans., 64 (2015) 15–24. [71] K.-S. Lee, M.A. El-Sayed, Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition, J. Phys. Chem. B, 110 (2006) 19220–19225. [72] S.L. Smitha, K.M. Nissamudeen, D. Philip, K.G. Gopchandran, Studies on surface plasmon resonance and photoluminescence of silver nanoparticles, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 71 (2008) 186–190. [73] K.-C. Lee, S.-J. Lin, C.-H. Lin, C.-S. Tsai, Y.-J. Lu, Size effect of Ag nanoparticles on surface plasmon resonance, Surf. Coatings Technol., 202 (2008) 5339–5342.

Green Synthesis of Silver Nanoparticles from Phaseolus vulgaris L. Extracts and Investigation of their Antifungal Activities

Year 2021, Volume: 49 Issue: 1, 11 - 23, 01.01.2021
https://doi.org/10.15671/hjbc.680371

Abstract

In this study, we aimed to synthesize silver nanoparticles (AgNPs) using leaf, root, and stem extracts of Phaseolus vulgaris L. (Yunus-90) and elucidate their antifungal activities. In this regard, the prepared AgNPs have been characterized by using UV-vis, FT-IR, TEM, SEM, and DLS techniques. Then, the antifungal activity of both synthesized and commercially purchased AgNPs was investigated via (i) agar well diffusion, (ii) fungal colony morphotype diversity, (iii) inhibition of hyphae and (iv) minimum inhibition concentration (MIC) analyses against Colletotrichum sp., Fusarium oxysporum, Fusarium acuminatum, Fusarium tricinctum, Fusarium graminearum, Fusarium incarnatum, Rhizoctonia solani, Sclerotinia sclerotiorum, and Alternaria alternata. The AgNPs derived from the leaf extract displayed significantly higher levels of antifungal activity relative to the AgNPs prepared from the root and stem extracts. The commercial AgNPs also displayed lower antifungal activity than their green equivalents synthesized in this research, and even a low (~50 μg/mL) concentration of synthesized AgNPs was found to be effective in suppressing the growth of Fusarium tricinctum and Colletotrichum sp.

References

  • [1] P. Wang, E. Lombi, F.-J. Zhao, P.M. Kopittke, Nanotechnology: A New Opportunity in Plant Sciences, Trends Plant Sci., 21 (2016) 699–712. [2] T. Khan, P. Gurav, PhytoNanotechnology: Enhancing the delivery of plant-based anti-cancer drugs, Front. Pharmacol., (2018). [3] P. Mohammadi, M. Hesari, H. Samadian, M. Hajialyani, Z. Bayrami, M.H. Farzaei, M. Abdollahi, Recent advancements and new perspectives of phytonanotechnology, in: Compr. Anal. Chem., 2019. [4] P. Agarwal, R. Gupta, N. Agarwal, Advances in Synthesis and Applications of Microalgal Nanoparticles for Wastewater Treatment, J. Nanotechnol., 2019 (2019) 1–9. [5] R. Rajan, K. Chandran, S.L. Harper, S.-I. Yun, P.T. Kalaichelvan, Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials, Ind. Crops Prod., 70 (2015) 356–373. [6] H.R. Ghorbani, Green synthesis of gold nanoparticles, Orient. J. Chem., 31 (2015) 303–305. [7] P. Rajoriya, P. Misra, V.K. Singh, P.K. Shukla, P.W. Ramteke, Green Synthesis of Silver Nanoparticles, Biotech Today An Int. J. Biol. Sci. (2017). [8] K.S. Siddiqi, A. Husen, Green Synthesis, Characterization, and Uses of Palladium/Platinum Nanoparticles, Nanoscale Res. Lett., (2016). [9] A. Asha, Green Synthesis of Silver Nanoparticle from Different Plants– A Review, Int. J. Pure Appl. Biosci., 4 (2016) 118–124. [10] A.J. Haes, R.P. Van Duyne, A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc., (2002). [11] L. Sintubin, W. Verstraete, N. Boon, Biologically produced nanosilver: Current state and future perspectives, Biotechnol. Bioeng., (2012). [12] J. Lin, C. He, Y. Zhao, S. Zhang, One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor, Sensors Actuators, B Chem., 137 (2009) 768–773. [13] L. Mahmudin, E. Suharyadi, A.B.S. Utomo, K. Abraha, Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance (SPR)-Based Biosensor Applications, J. Mod. Phys., (2015). [14] X. Ren, X. Meng, D. Chen, F. Tang, J. Jiao, Using silver nanoparticle to enhance current response of biosensor, Biosens. Bioelectron., (2005). [15] K. Ueno, Y. Yokota, S. Juodkazis, V. Mizeikis, H. Misawa, Nano-Structured Materials in Plasmonics and Photonics, Curr. Nanosci., (2008). [16] P. Akhter, M. Huang, W. Spratt, N. Kadakia, F. Amir, Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications, J. Appl. Phys., 117 (2015). [17] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide, J. Am. Chem. Soc., 130 (2008) 1676–1680. [18] S. Sarina, E.R. Waclawik, H. Zhu, Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation, Green Chem., (2013). [19] E. Grabowska, A. Zaleska, S. Sorgues, M. Kunst, A. Etcheberry, C. Colbeau-Justin, H. Remita, Modification of titanium(IV) dioxide with small silver nanoparticles: Application in photocatalysis, J. Phys. Chem. C, 117 (2013) 1955–1962. [20] P.D. Cozzoli, R. Comparelli, E. Fanizza, M.L. Curri, A. Agostiano, D. Laub, Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO 2 Nanorods: A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution, J. Am. Chem. Soc., 126 (2004) 3868–3879. [21] J. Jain, S. Arora, J.M. Rajwade, P. Omray, S. Khandelwal, K.M. Paknikar, Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use, in: Mol. Pharm., 2009: pp. 1388–1401. [22] G.D. Mogoşanu, A.M. Grumezescu, C. Bejenaru, L.E. Bejenaru, Polymeric protective agents for nanoparticles in drug delivery and targeting, Int. J. Pharm., 510 (2016) 419–429. [23] M. Rai, A.P. Ingle, P. Paralikar, I. Gupta, S. Medici, C.A. Santos, Recent advances in use of silver nanoparticles as antimalarial agents, Int. J. Pharm., 526 (2017) 254–270. [24] N. Lochner, C. Lobmaier, M. Wirth, A. Leitner, F. Pittner, F. Gabor, Silver nanoparticle enhanced immunoassays: One step real time kinetic assay for insulin in serum, Eur. J. Pharm. Biopharm., 56 (2003) 469–477. [25] L. Pinďáková, V. Kašpárková, K. Kejlová, M. Dvořáková, D. Krsek, D. Jírová, L. Kašparová, Behaviour of silver nanoparticles in simulated saliva and gastrointestinal fluids, Int. J. Pharm., 527 (2017) 12–20. [26] K. Kejlová, V. Kašpárková, D. Krsek, D. Jírová, H. Kolářová, M. Dvořáková, K. Tománková, V. Mikulcová, Characteristics of silver nanoparticles in vehicles for biological applications, Int. J. Pharm., 496 (2015) 878–885. [27] M. Torres-Cisneros, C. Velásquez-Ordónez, J. Sánchez-Mondragón, A. Campero, O.G. Ibarra-Manzano, D.A. May-Arrioja, H. Plascencia-Mora, A. Espinoza-Calderón, I. Sukhoivanov, Synthesis and optical characterization of Ag0 nanoparticles, Microelectronics J., (2009). [28] H.A. Alarifi, M. Atis, C. Özdoǧan, A. Hu, M. Yavuz, Y. Zhou, Molecular dynamics simulation of sintering and surface premelting of silver nanoparticles, Mater. Trans., 54 (2013) 884–889. [29] M. Torres-Cisneros, N. Yanagihara, B. Gonzalez-Rolon, M.A. Meneses-Nava, O.G. Ibarra-Manzano, D.A. May-Arrioja, J. Sánchez-Mondragón, E. Aguilera-Gómez, L.A. Aguilera-Cortés, Synthesis and nonlinear optical behavior of Ag nanoparticles in PMMA, Microelectronics J., (2009). [30] S. Thakur, K.M. G., S.R. M., Plant-Mediated Synthesis of Silver Nanoparticles – A Critical Review, Int. J. Pharmacogn. Phytochem. Res., (2018). [31] M. Nakamoto, M. Yamamoto, Y. Kashiwagi, H. Kakiuchi, T. Tsujimoto, Y. Yoshida, A variety of silver nanoparticle pastes for fine electronic circuit pattern formation, in: 6th Int. IEEE Conf. Polym. Adhes. Microelectron. Photonics, Polytronic 2007, Proc., 2007. [32] A. Panáček, M. Kolář, R. Večeřová, R. Prucek, J. Soukupová, V. Kryštof, P. Hamal, R. Zbořil, L. Kvítek, Antifungal activity of silver nanoparticles against Candida spp, Biomaterials, 30 (2009) 6333–6340. [33] J. Lee, K.-J. Kim, W. Sang, J. Guk, D. Gun, The Silver Nanoparticle (Nano-Ag): a New Model for Antifungal Agents, in: Silver Nanoparticles, 2010. [34] Y.K. Jo, B.H. Kim, G. Jung, Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi, Plant Dis., 93 (2009) 1037–1043. [35] J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Antimicrobial effects of silver nanoparticles, Nanomedicine Nanotechnology, Biol. Med., 3 (2007) 95–101. [36] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 27 (2009) 76–83. [37] N. Durán, M. Durán, M.B. de Jesus, A.B. Seabra, W.J. Fávaro, G. Nakazato, Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity, Nanomedicine Nanotechnology, Biol. Med., 12 (2016) 789–799. [38] V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci., (2009). [39] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: A case study on E coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., (2004). [40] S. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra, M. Galdiero, Silver nanoparticles as potential antiviral agents, Molecules, 16 (2011) 8894–8918. [41] H.H. Lara, E.N. Garza-Treviño, L. Ixtepan-Turrent, D.K. Singh, Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds, J. Nanobiotechnology, 9 (2011). [42] H.H. Lara, N. V. Ayala-Nuñez, L. Ixtepan-Turrent, C. Rodriguez-Padilla, Mode of antiviral action of silver nanoparticles against HIV-1, J. Nanobiotechnology, 8 (2010). [43] S. Park, H.H. Park, S.Y. Kim, S.J. Kim, K. Woo, G. Ko, Antiviral Properties of Silver Nanoparticles on a Magnetic Hybrid Colloid, Appl. Environ. Microbiol., (2014). [44] P. Orlowski, E. Tomaszewska, M. Gniadek, P. Baska, J. Nowakowska, J. Sokolowska, Z. Nowak, M. Donten, G. Celichowski, J. Grobelny, M. Krzyzowska, Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection, PLoS One, (2014). [45] C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, C.-M. Che, Silver nanoparticles: partial oxidation and antibacterial activities, JBIC J. Biol. Inorg. Chem., 12 (2007) 527–534. [46] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, M.J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology, 16 (2005) 2346–2353. [47] G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver nanoparticles as potential antibacterial agents, Molecules, 20 (2015) 8856–8874. [48] P. Van Dong, C.H. Ha, L.T. Binh, J. Kasbohm, Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles, Int. Nano Lett., (2012). [49] B. Le Ouay, F. Stellacci, Antibacterial activity of silver nanoparticles: A surface science insight, Nano Today, 10 (2015) 339–354. [50] S. Gurunathan, K.J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan, S.H. Eom, Antiangiogenic properties of silver nanoparticles, Biomaterials, 30 (2009) 6341–6350. [51] K.K.Y. Wong, S.O.F. Cheung, L. Huang, J. Niu, C. Tao, C.M. Ho, C.M. Che, P.K.H. Tam, Further evidence of the anti-inflammatory effects of silver nanoparticles, ChemMedChem, 4 (2009) 1129–1135. [52] L. David, B. Moldovan, A. Vulcu, L. Olenic, M. Perde-Schrepler, E. Fischer-Fodor, A. Florea, M. Crisan, I. Chiorean, S. Clichici, G.A. Filip, Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract, Colloids Surfaces B Biointerfaces, 122 (2014) 767–777. [53] H. Mohamed El-Rafie, M. Abdel-Aziz Hamed, Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species, Adv. Nat. Sci. Nanosci. Nanotechnol., 5 (2014). [54] R. Sankar, A. Karthik, A. Prabu, S. Karthik, K.S. Shivashangari, V. Ravikumar, Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity, Colloids Surfaces B Biointerfaces, 108 (2013) 80–84. [55] M. Rai, K. Kon, A. Ingle, N. Duran, S. Galdiero, M. Galdiero, Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects, Appl. Microbiol. Biotechnol., 98 (2014) 1951–1961. [56] D. Nayak, S. Pradhan, S. Ashe, P.R. Rauta, B. Nayak, Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma, J. Colloid Interface Sci., 457 (2015) 329–338. [57] H. Sharma, P.K. Mishra, S. Talegaonkar, B. Vaidya, Metal nanoparticles: A theranostic nanotool against cancer, Drug Discov. Today, 20 (2015) 1143–1151. [58] V. Kathiravan, S. Ravi, S. Ashokkumar, Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 130 (2014) 116–121. [59] S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise, J. Adv. Res., 7 (2016) 17–28. [60] D. MubarakAli, N. Thajuddin, K. Jeganathan, M. Gunasekaran, Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens, Colloids Surfaces B Biointerfaces, 85 (2011) 360–365. [61] P. Logeswari, S. Silambarasan, J. Abraham, Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property, J. Saudi Chem. Soc., 19 (2015) 311–317. [62] S. Prabhu, E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett., 2 (2012). [63] J.Y. Song, B.S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess Biosyst. Eng., 32 (2009) 79–84. [64] N.G. Bastús, F. Merkoçi, J. Piella, V. Puntes, Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties, Chem. Mater., 26 (2014) 2836–2846. [65] X. Dong, X. Ji, H. Wu, L. Zhao, J. Li, W. Yang, Shape control of silver nanoparticles by stepwise citrate reduction, J. Phys. Chem. C, 113 (2009) 6573–6576. [66] K.C. Song, S.M. Lee, T.S. Park, B.S. Lee, Preparation of colloidal silver nanoparticles by chemical reduction method, Korean J. Chem. Eng., 26 (2009) 153–155. [67] F. Mehr, M. Khanjani, P. Vatani, Synthesis of Nano-Ag particles using Sodium Borohydride, Orient. J. Chem., 31 (2015) 1831–1833. [68] K.D. Bhatte, K.M. Deshmukh, Y.P. Patil, D.N. Sawant, S.-I. Fujita, M. Arai, B.M. Bhanage, Synthesis of powdered silver nanoparticles using hydrogen in aqueous medium, Particuology, 10 (2012) 140–143. [69] C.D. Kane, R.L. Jasoni, E.P. Peffley, L.D. Thompson, C.J. Green, P. Pare, D. Tissue, Nutrient solution and solution pH influences on onion growth and mineral content, J. Plant Nutr., 29 (2006) 375–390. [70] S. Kuunal, S. Kutti, M. Guha, P. Rauwel, D. Wragg, G. Nurk, E. Rauwel, Silver Nanoparticles Study for Application in Green Housing, ECS Trans., 64 (2015) 15–24. [71] K.-S. Lee, M.A. El-Sayed, Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition, J. Phys. Chem. B, 110 (2006) 19220–19225. [72] S.L. Smitha, K.M. Nissamudeen, D. Philip, K.G. Gopchandran, Studies on surface plasmon resonance and photoluminescence of silver nanoparticles, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 71 (2008) 186–190. [73] K.-C. Lee, S.-J. Lin, C.-H. Lin, C.-S. Tsai, Y.-J. Lu, Size effect of Ag nanoparticles on surface plasmon resonance, Surf. Coatings Technol., 202 (2008) 5339–5342.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ege Ediz This is me

Gülbin Kurtay 0000-0003-0920-8409

Başar Karaca 0000-0001-6943-8965

İlker Büyük 0000-0002-0843-8299

Fatma Şeyma Gökdemir 0000-0003-2951-848X

Sumer Aras 0000-0003-3474-9493

Publication Date January 1, 2021
Acceptance Date September 29, 2020
Published in Issue Year 2021 Volume: 49 Issue: 1

Cite

APA Ediz, E., Kurtay, G., Karaca, B., Büyük, İ., et al. (2021). Green Synthesis of Silver Nanoparticles from Phaseolus vulgaris L. Extracts and Investigation of their Antifungal Activities. Hacettepe Journal of Biology and Chemistry, 49(1), 11-23. https://doi.org/10.15671/hjbc.680371
AMA Ediz E, Kurtay G, Karaca B, Büyük İ, Gökdemir FŞ, Aras S. Green Synthesis of Silver Nanoparticles from Phaseolus vulgaris L. Extracts and Investigation of their Antifungal Activities. HJBC. January 2021;49(1):11-23. doi:10.15671/hjbc.680371
Chicago Ediz, Ege, Gülbin Kurtay, Başar Karaca, İlker Büyük, Fatma Şeyma Gökdemir, and Sumer Aras. “Green Synthesis of Silver Nanoparticles from Phaseolus Vulgaris L. Extracts and Investigation of Their Antifungal Activities”. Hacettepe Journal of Biology and Chemistry 49, no. 1 (January 2021): 11-23. https://doi.org/10.15671/hjbc.680371.
EndNote Ediz E, Kurtay G, Karaca B, Büyük İ, Gökdemir FŞ, Aras S (January 1, 2021) Green Synthesis of Silver Nanoparticles from Phaseolus vulgaris L. Extracts and Investigation of their Antifungal Activities. Hacettepe Journal of Biology and Chemistry 49 1 11–23.
IEEE E. Ediz, G. Kurtay, B. Karaca, İ. Büyük, F. Ş. Gökdemir, and S. Aras, “Green Synthesis of Silver Nanoparticles from Phaseolus vulgaris L. Extracts and Investigation of their Antifungal Activities”, HJBC, vol. 49, no. 1, pp. 11–23, 2021, doi: 10.15671/hjbc.680371.
ISNAD Ediz, Ege et al. “Green Synthesis of Silver Nanoparticles from Phaseolus Vulgaris L. Extracts and Investigation of Their Antifungal Activities”. Hacettepe Journal of Biology and Chemistry 49/1 (January 2021), 11-23. https://doi.org/10.15671/hjbc.680371.
JAMA Ediz E, Kurtay G, Karaca B, Büyük İ, Gökdemir FŞ, Aras S. Green Synthesis of Silver Nanoparticles from Phaseolus vulgaris L. Extracts and Investigation of their Antifungal Activities. HJBC. 2021;49:11–23.
MLA Ediz, Ege et al. “Green Synthesis of Silver Nanoparticles from Phaseolus Vulgaris L. Extracts and Investigation of Their Antifungal Activities”. Hacettepe Journal of Biology and Chemistry, vol. 49, no. 1, 2021, pp. 11-23, doi:10.15671/hjbc.680371.
Vancouver Ediz E, Kurtay G, Karaca B, Büyük İ, Gökdemir FŞ, Aras S. Green Synthesis of Silver Nanoparticles from Phaseolus vulgaris L. Extracts and Investigation of their Antifungal Activities. HJBC. 2021;49(1):11-23.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc