Research Article
BibTex RIS Cite
Year 2022, Volume: 50 Issue: 2, 143 - 150, 28.02.2022
https://doi.org/10.15671/hjbc.925338

Abstract

References

  • Referans 1 C.B. Zhang, J. Wang, W.L. Liu, S.X. Zhu, H.L. Ge, S.X. Chang, J. Chang, Y. Ge, Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecol. Eng., 36 (2010) 62-68. https://doi.org/10.1016/j.ecoleng.2009.09.010
  • Referans 2 J.A. Fuhrman, Microbial community structure and its functional implications. Nature, 459 (2009) 193-199.
  • Referans 3 J. Harris, Soil microbial communities and restoration ecology: facilitators or followers?. Science, 325 (2009) 573-574. https://doi.org/10.1126/science.1172975
  • Referans 4 S. Sugiyama, H.M. Zabed, A. Okubo, Relationships between soil microbial diversity and plant community structure in seminatural grasslands. Grassland science, 54 (2008) 117-124. https://doi.org/10.1111/j.1744‐697X.2008.00113.x
  • Referans 5 G.B. De Deyn, J.H. Cornelissen, R.D. Bardgett, Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett., 11 (2008) 516-531. https://doi.org/10.1111/j.1461-0248.2008.01164.x
  • Referans 6 V. Torsvik, L. Øvreås, Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol., 5 (2002) 240-245. https://doi.org/10.1016/s1369-5274(02)00324-7
  • Referans 7 S.J. Grayston, C.D. Campbell, Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree Physiol., 16 (1996) 1031-1038. https://doi.org/10.1093/treephys/16.11-12.1031
  • Referans 8 H. Różycki, H. Dahm, E. Strzelczyk, C.Y. Li, Diazotrophic bacteria in root-free soil and in the root zone of pine (Pinus sylvestris L.) and oak (Quercus robur L.). Appl. Soil Ecol., 12 (1999) 239-250. https://doi.org/10.1016/S0929-1393(99)00008-6
  • Referans 9 O. Priha, S.J. Grayston, T. Pennanen, A. Smolander, Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil. FEMS Microbiol. Ecol., 30 (1999) 187-199. https://doi.org/10.1111/j.1574-6941.1999.tb00647.x
  • Referans 10 F. Fornasier, J. Ascher, M.T. Ceccherini, E. Tomat, G. Pietramellara, A simplified rapid, low-cost and versatile DNA-based assessment of soil microbial biomass. Ecol. Indic., 45 (2014) 75-82. https://doi.org/10.1016/j.ecolind.2014.03.028
  • Referans 11 A. Gallardo, W.H. Schlesinger, Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol. Biochem., 26 (1994) 1409-1415. https://doi.org/10.1016/0038-0717(94)90225-9
  • Referans 12 J.L. Garland, A.L. Mills, Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol., 57 (1991) 2351-2359.
  • Referans 13 H. Insam, Substrate utilization tests in microbial ecology: a preface to the special issue of the Journal of Microbiological Methods. J. Microbiol. Methods, 30 (1997) 1-2. Referans 14 S. Türkiş, E. Elmas, Effect of environmental factors on species diversity of the Yenice Hot Spot Forests in Turkey. J. For. Res., 29 (2018) 1719-1730.
  • Referans 15 J. Braun-Blanquet, Plant sociology. The study of plant communities, First ed., McGraw-Hill, New York, 1932.
  • Referans 16 P.H. Davis, Flora of Turkey and the East Aegean Island, vol 1–10. Edinburgh University Press, Edinburgh, 1965–1988.
  • Referans 17 M. Kilinç, H.G. Kutbay, E. Yalçin, A. Bilgin, Bitki Ekolojisi ve Bitki Sosyolojisi Uygulamaları. Palme. Ankara, 2006.
  • Referans 18 L. Tichy, M. Chytry, Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science, 17 (2006) 809-818. https://doi.org/10.1111/j.1654-1103.2006.tb02504.x
  • Referans 19 K.P. Weber, R.L. Legge, One-dimensional metric for tracking bacterial community divergence using sole carbon source utilization patterns. J. Microbiol. Methods. 79 (2009) 55-61. https://doi.org/10.1016/j.mimet.2009.07.020
  • Referans 20 L.A. Richards, Diagnosis and Improvement of Saline and Alkali Soils. – United States Department of Agriculture, U.S. Government Printing Office, Washington D.C, 1954.
  • Referans 21 M.E.Y. Boivin, Diversity of Microbial Communities in Metal polluted Heterogeneous Environments, University of Amsterdam, The Netherlands, 2005.
  • Referans 22 D.E. Lewis, J.R. White, D. Wafula, R. Athar, T. Dickerson, H.N. Williams, A. Chauhan, Soil functional diversity analysis of a bauxite-mined restoration chronosequence. Microb. Ecol. 59 (2010) 710-723. https://doi.org/10.1007/s00248-009-9621-x
  • Referans 23 J.C. Zak, M.R. Willig, D.L. Moorhead, H.G. Wildman, Functional diversity of microbial communities: a quantitative approach. – Soil Biol. Biochem. 26 (1994) 1101–1108. https://doi.org/10.1016/0038-0717(94)90131-7.
  • Referans 24 T. Pennanen, J. Liski, E. Bååth, V. Kitunen, J. Uotila, C.J. Westman, H. Fritze, Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage. Microb. Ecol., 38 (1999) 168-179. https://doi.org/10.1007/s002489900161
  • Referans 25 R.T. Myers, D.R. Zak, D.C. White, A. Peacock, Landscape‐level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci. Soc. Am. J. 65 (2001) 359-367.
  • Referans 26 A. Gryta, M. Frąc, K. Oszust, The Application of the Biolog EcoPlate Approach in Ecotoxicological Evaluation of Dairy Sewage Sludge. Appl Biochem Biotechnol 174 (2014) 1434-1443. https://doi.org/10.1007/s12010-014-1131-8.
  • Referans 27 J.M. Stark, M.K. Firestone, Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl. Environ. Microbiol., 61 (1995) 218-221.
  • Referans 28 D.M. Sylvia, J.J. Fuhrmann, P.G. Hartel, D.A. Zuberer, Principles and applications of soil microbiology (No. QR111 S674 2005). Pearson, 2005.
  • Referans 29 E.A. Paul, F.E. Clark, Soil microbiology and biochemistry, 2nd ed. Academic Press, New York, 1996.
  • Referans 30 N. Van Breemen, A.C. Finzi, Plant-soil interactions: ecological aspects and evolutionary implications. Biogeochemistry, 42 (1998) 1-19.
  • Referans 31 T.E. Kraus, R.A. Dahlgren, R.J. Zasoski, Tannins in nutrient dynamics of forest ecosystems-a review. Plant Soil, 256 (2003) 41-66.
  • Referans 32 K. Lorenz, C.M. , Preston, S. Krumrei, K.H. Feger, Decomposition of needle/leaf litter from Scots pine, black cherry, common oak and European beech at a conurbation forest site. Eur. J. For. Res., 123 (2004) 177-188.
  • Referans 33 D.R. Zak, D.B. Ringelberg, K.S. Pregitzer, D.L. Randlett, D.C. White, P.S. Curtis, Soil microbial communities beneath Populus tremuloides grown under elevated atmospheric CO2. Ecol. Appl. 6 (1996) 257–262.
  • Referans 34 N.Fierer, J.P. Schimel, R.G. Cates, J. Zou, Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils. Soil Biol. Biochem., 33 (2001) 1827-1839. https://doi.org/10.1016/S0038-0717(01)00111-0
  • Referans 35 B. Adamczyk, M. Karonen, S. Adamczyk, M.T. Engström, T. Laakso, P. Saranpää, v. Kitunena, A. Smolander, A J. Simon, Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biol. Biochem., 107 (2017) 60-67. https://doi.org/10.1016/j.soilbio.2016.12.027

Analysis of Microbial Diversity in Various Forest Communities by Biolog Ecoplate Method: Yenice Hot Spot

Year 2022, Volume: 50 Issue: 2, 143 - 150, 28.02.2022
https://doi.org/10.15671/hjbc.925338

Abstract

The present study identifies the hot spot of Yenice and aims to determine the tree diversity in the Fagus-Abies, Fagus and Quercus-Fagus forests, to define the microbial community in these forests by the Biolog-Ecoplate method and to reveal the physiological profile differences at the community level between forests. Accordingly, soil samples were taken from these predefined forests and the microbial community in different forests communities was analyzed using the Biolog EcoPlate method. In addition, cover-proportion values of the tree species were determined according to Braun-Blanquet method. As a results, the diversity in microbial communities has been determined as Fagus-Abies (3.0033 ± 0.006), Fagus (1.2267 ± 0.006) and Quercus-Fagus (1.1267 ± 0.012), from highest to lowest, respectively. On the other hand, the fact that the diversity of carbon sources in the Fagus forest was quite high and the use of phosphate carbon is seen only in this type of forest is quite significant. In the present study, the Biolog Ecoplate method was applied for the first time to determine the microbial community among forest communities. The results obtained from the present study clearly show the practicability and effectiveness of this method in forest communities. Meanwhile, determination of the microbial community will contribute to the development of new strategies for establishing ecosystem protection practices.

References

  • Referans 1 C.B. Zhang, J. Wang, W.L. Liu, S.X. Zhu, H.L. Ge, S.X. Chang, J. Chang, Y. Ge, Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecol. Eng., 36 (2010) 62-68. https://doi.org/10.1016/j.ecoleng.2009.09.010
  • Referans 2 J.A. Fuhrman, Microbial community structure and its functional implications. Nature, 459 (2009) 193-199.
  • Referans 3 J. Harris, Soil microbial communities and restoration ecology: facilitators or followers?. Science, 325 (2009) 573-574. https://doi.org/10.1126/science.1172975
  • Referans 4 S. Sugiyama, H.M. Zabed, A. Okubo, Relationships between soil microbial diversity and plant community structure in seminatural grasslands. Grassland science, 54 (2008) 117-124. https://doi.org/10.1111/j.1744‐697X.2008.00113.x
  • Referans 5 G.B. De Deyn, J.H. Cornelissen, R.D. Bardgett, Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett., 11 (2008) 516-531. https://doi.org/10.1111/j.1461-0248.2008.01164.x
  • Referans 6 V. Torsvik, L. Øvreås, Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol., 5 (2002) 240-245. https://doi.org/10.1016/s1369-5274(02)00324-7
  • Referans 7 S.J. Grayston, C.D. Campbell, Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree Physiol., 16 (1996) 1031-1038. https://doi.org/10.1093/treephys/16.11-12.1031
  • Referans 8 H. Różycki, H. Dahm, E. Strzelczyk, C.Y. Li, Diazotrophic bacteria in root-free soil and in the root zone of pine (Pinus sylvestris L.) and oak (Quercus robur L.). Appl. Soil Ecol., 12 (1999) 239-250. https://doi.org/10.1016/S0929-1393(99)00008-6
  • Referans 9 O. Priha, S.J. Grayston, T. Pennanen, A. Smolander, Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil. FEMS Microbiol. Ecol., 30 (1999) 187-199. https://doi.org/10.1111/j.1574-6941.1999.tb00647.x
  • Referans 10 F. Fornasier, J. Ascher, M.T. Ceccherini, E. Tomat, G. Pietramellara, A simplified rapid, low-cost and versatile DNA-based assessment of soil microbial biomass. Ecol. Indic., 45 (2014) 75-82. https://doi.org/10.1016/j.ecolind.2014.03.028
  • Referans 11 A. Gallardo, W.H. Schlesinger, Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol. Biochem., 26 (1994) 1409-1415. https://doi.org/10.1016/0038-0717(94)90225-9
  • Referans 12 J.L. Garland, A.L. Mills, Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol., 57 (1991) 2351-2359.
  • Referans 13 H. Insam, Substrate utilization tests in microbial ecology: a preface to the special issue of the Journal of Microbiological Methods. J. Microbiol. Methods, 30 (1997) 1-2. Referans 14 S. Türkiş, E. Elmas, Effect of environmental factors on species diversity of the Yenice Hot Spot Forests in Turkey. J. For. Res., 29 (2018) 1719-1730.
  • Referans 15 J. Braun-Blanquet, Plant sociology. The study of plant communities, First ed., McGraw-Hill, New York, 1932.
  • Referans 16 P.H. Davis, Flora of Turkey and the East Aegean Island, vol 1–10. Edinburgh University Press, Edinburgh, 1965–1988.
  • Referans 17 M. Kilinç, H.G. Kutbay, E. Yalçin, A. Bilgin, Bitki Ekolojisi ve Bitki Sosyolojisi Uygulamaları. Palme. Ankara, 2006.
  • Referans 18 L. Tichy, M. Chytry, Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science, 17 (2006) 809-818. https://doi.org/10.1111/j.1654-1103.2006.tb02504.x
  • Referans 19 K.P. Weber, R.L. Legge, One-dimensional metric for tracking bacterial community divergence using sole carbon source utilization patterns. J. Microbiol. Methods. 79 (2009) 55-61. https://doi.org/10.1016/j.mimet.2009.07.020
  • Referans 20 L.A. Richards, Diagnosis and Improvement of Saline and Alkali Soils. – United States Department of Agriculture, U.S. Government Printing Office, Washington D.C, 1954.
  • Referans 21 M.E.Y. Boivin, Diversity of Microbial Communities in Metal polluted Heterogeneous Environments, University of Amsterdam, The Netherlands, 2005.
  • Referans 22 D.E. Lewis, J.R. White, D. Wafula, R. Athar, T. Dickerson, H.N. Williams, A. Chauhan, Soil functional diversity analysis of a bauxite-mined restoration chronosequence. Microb. Ecol. 59 (2010) 710-723. https://doi.org/10.1007/s00248-009-9621-x
  • Referans 23 J.C. Zak, M.R. Willig, D.L. Moorhead, H.G. Wildman, Functional diversity of microbial communities: a quantitative approach. – Soil Biol. Biochem. 26 (1994) 1101–1108. https://doi.org/10.1016/0038-0717(94)90131-7.
  • Referans 24 T. Pennanen, J. Liski, E. Bååth, V. Kitunen, J. Uotila, C.J. Westman, H. Fritze, Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage. Microb. Ecol., 38 (1999) 168-179. https://doi.org/10.1007/s002489900161
  • Referans 25 R.T. Myers, D.R. Zak, D.C. White, A. Peacock, Landscape‐level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci. Soc. Am. J. 65 (2001) 359-367.
  • Referans 26 A. Gryta, M. Frąc, K. Oszust, The Application of the Biolog EcoPlate Approach in Ecotoxicological Evaluation of Dairy Sewage Sludge. Appl Biochem Biotechnol 174 (2014) 1434-1443. https://doi.org/10.1007/s12010-014-1131-8.
  • Referans 27 J.M. Stark, M.K. Firestone, Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl. Environ. Microbiol., 61 (1995) 218-221.
  • Referans 28 D.M. Sylvia, J.J. Fuhrmann, P.G. Hartel, D.A. Zuberer, Principles and applications of soil microbiology (No. QR111 S674 2005). Pearson, 2005.
  • Referans 29 E.A. Paul, F.E. Clark, Soil microbiology and biochemistry, 2nd ed. Academic Press, New York, 1996.
  • Referans 30 N. Van Breemen, A.C. Finzi, Plant-soil interactions: ecological aspects and evolutionary implications. Biogeochemistry, 42 (1998) 1-19.
  • Referans 31 T.E. Kraus, R.A. Dahlgren, R.J. Zasoski, Tannins in nutrient dynamics of forest ecosystems-a review. Plant Soil, 256 (2003) 41-66.
  • Referans 32 K. Lorenz, C.M. , Preston, S. Krumrei, K.H. Feger, Decomposition of needle/leaf litter from Scots pine, black cherry, common oak and European beech at a conurbation forest site. Eur. J. For. Res., 123 (2004) 177-188.
  • Referans 33 D.R. Zak, D.B. Ringelberg, K.S. Pregitzer, D.L. Randlett, D.C. White, P.S. Curtis, Soil microbial communities beneath Populus tremuloides grown under elevated atmospheric CO2. Ecol. Appl. 6 (1996) 257–262.
  • Referans 34 N.Fierer, J.P. Schimel, R.G. Cates, J. Zou, Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils. Soil Biol. Biochem., 33 (2001) 1827-1839. https://doi.org/10.1016/S0038-0717(01)00111-0
  • Referans 35 B. Adamczyk, M. Karonen, S. Adamczyk, M.T. Engström, T. Laakso, P. Saranpää, v. Kitunena, A. Smolander, A J. Simon, Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biol. Biochem., 107 (2017) 60-67. https://doi.org/10.1016/j.soilbio.2016.12.027
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sevda Türkiş 0000-0002-1853-8437

Esra Deniz Candan 0000-0003-2515-9643

Publication Date February 28, 2022
Acceptance Date October 3, 2021
Published in Issue Year 2022 Volume: 50 Issue: 2

Cite

APA Türkiş, S., & Candan, E. D. (2022). Analysis of Microbial Diversity in Various Forest Communities by Biolog Ecoplate Method: Yenice Hot Spot. Hacettepe Journal of Biology and Chemistry, 50(2), 143-150. https://doi.org/10.15671/hjbc.925338
AMA Türkiş S, Candan ED. Analysis of Microbial Diversity in Various Forest Communities by Biolog Ecoplate Method: Yenice Hot Spot. HJBC. February 2022;50(2):143-150. doi:10.15671/hjbc.925338
Chicago Türkiş, Sevda, and Esra Deniz Candan. “Analysis of Microbial Diversity in Various Forest Communities by Biolog Ecoplate Method: Yenice Hot Spot”. Hacettepe Journal of Biology and Chemistry 50, no. 2 (February 2022): 143-50. https://doi.org/10.15671/hjbc.925338.
EndNote Türkiş S, Candan ED (February 1, 2022) Analysis of Microbial Diversity in Various Forest Communities by Biolog Ecoplate Method: Yenice Hot Spot. Hacettepe Journal of Biology and Chemistry 50 2 143–150.
IEEE S. Türkiş and E. D. Candan, “Analysis of Microbial Diversity in Various Forest Communities by Biolog Ecoplate Method: Yenice Hot Spot”, HJBC, vol. 50, no. 2, pp. 143–150, 2022, doi: 10.15671/hjbc.925338.
ISNAD Türkiş, Sevda - Candan, Esra Deniz. “Analysis of Microbial Diversity in Various Forest Communities by Biolog Ecoplate Method: Yenice Hot Spot”. Hacettepe Journal of Biology and Chemistry 50/2 (February 2022), 143-150. https://doi.org/10.15671/hjbc.925338.
JAMA Türkiş S, Candan ED. Analysis of Microbial Diversity in Various Forest Communities by Biolog Ecoplate Method: Yenice Hot Spot. HJBC. 2022;50:143–150.
MLA Türkiş, Sevda and Esra Deniz Candan. “Analysis of Microbial Diversity in Various Forest Communities by Biolog Ecoplate Method: Yenice Hot Spot”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 2, 2022, pp. 143-50, doi:10.15671/hjbc.925338.
Vancouver Türkiş S, Candan ED. Analysis of Microbial Diversity in Various Forest Communities by Biolog Ecoplate Method: Yenice Hot Spot. HJBC. 2022;50(2):143-50.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc