Research Article
BibTex RIS Cite

Hemp Reinforced Polylactic Acid (PLA) Composite Produced By Fused Filament Fabrication (FFF)

Year 2022, Volume: 50 Issue: 3, 239 - 246, 01.08.2022
https://doi.org/10.15671/hjbc.1032298

Abstract

Reinforcement of polymer matrix with natural fiber can provide an increase in mechanical properties of the related composite. Since thermoplastics, especially bio composite materials are recyclable, they contribute to a sustainable ecosystem. In this study, 10% by weight hemp reinforced polylactic acid (PLA) matrix compounds were produced. Tensile test specimens were performed in two different infill patterns, parallel and +/- 45° cross, using the Fused Filament Fabrication (FFF) method from the developed bio composite filaments. Ultimate tensile stress increases approximately 20%. It has been observed that the geometry of the infill pattern greatly affects the tensile strength. In addition, through optical and scanning electron microscopy (SEM) the the produced composite filaments were examined. Surface interactions and homogeneous fiber distribution between PLA and hemp were investigated. As a result, hemp is used as a reinforcement material in related studies, its homogeneous distribution is very important. Although the compounds were produced by twin-screw extrusion. Weakness in the form of the surface bonding is observed. This situation affects the structural performance negatively. Addition of hemp decreases the thermal resistance and melting temperature and increases the glass transition temperature comparing to pure PLA.

References

  • 1. K. Wong, A. Hernandez, A Review of Additive Manufacturing ISRN Mechanical Engineering, vol. 2012, (2012) 1–10, doi: 10.5402/2012/208760.
  • 2. D. Delgado, Camacho E., Applications of additive manufacturing in the construction industry – A forward-looking review, Automation in Construction, vol. 89, no. October 2017, (2018) 110–119, doi: 10.1016/j.autcon.2017.12.031.
  • 3. E. Vink, K. Rábago, D. Glassner, P. Gruber, “Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production,” Polymer Degradation and Stability, vol. 80, no. 3, (2013) 403–419, doi: 10.1016/S0141-3910(02)00372-5.
  • 4 A. Morão, F. Bie, Life Cycle Impact Assessment of Polylactic Acid (PLA) Produced from Sugarcane in Thailand, Journal of Polymers and the Environment, vol. 27, no. 11, (2019) 2523–2539, doi: 10.1007/s10924-019-01525-9.
  • 5. O. Mohamed, S. Masood, L. Bhowmik, Optimization of fused deposition modeling process parameters : a review of current research and future prospects, (2015) 42–53, doi: 10.1007/s40436-014-0097-7.
  • 6. C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D Printing and Customized Additive Manufacturing, Chemical Reviews, vol. 117, no. 15, (2017) 10212–10290, doi: 10.1021/acs.chemrev.7b00074.
  • 7. V. Mazzanti, M. Luna, R. Pariante, F. Mollica, G. Filippone, Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state, Composites Part A: Applied Science and Manufacturing, vol. 137, (2020), doi: 10.1016/j.compositesa.2020.105990.
  • 8. X. Xiao, V. Chevali, P. Song, D. He, H. Wang, Polylactide/hemp hurd biocomposites as sustainable 3D printing feedstock, Composites Science and Technology, vol. 184, (2019), doi: 10.1016/j.compscitech.2019.107887.
  • 9. F. Sarasini, J. Tirillò, C. Sergi, M. Seghini, L. Cozzarini, N. Graupner, Effect of basalt fibre hybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites, Composite Structures, vol. 188, (2018) 394–406 , doi: 10.1016/j.compstruct.2018.01.046.
  • 10. A. Naughton, M. Fan, J. Bregulla, Fire resistance characterisation of hemp fibre reinforced polyester composites for use in the construction industry, Composites Part B: Engineering, vol. 60, (2014) 546–554, doi: 10.1016/j.compositesb.2013.12.014.
  • 11. H. Hargitai, I. Rácz, D. Anandjiwala, Development of HEMP fiber reinforced polypropylene composites, Journal of Thermoplastic Composite Materials, vol. 21, no. 2, (2008) 165–174, doi: 10.1177/0892705707083949.
  • 12. A. Shahzad, Hemp fiber and its composites - A review, Journal of Composite Materials, vol. 46, no. 8, (2012) 973–986, , doi: 10.1177/0021998311413623.
  • 13. T. Yuanjian, D. Isaac, Impact and fatigue behaviour of hemp fibre composites, Composites Science and Technology, vol. 67, no. 15–16, (2007) 3300–3307, doi: 10.1016/j.compscitech.2007.03.039.
  • 14. A. Corbin, M. Ferreira, A. Labanieh, D. Soulat, Natural fiber composite manufacture using wrapped hemp roving with PA12, in Materials Today: Proceedings, vol. 31, (2019) 329-334. doi: 10.1016/j.matpr.2020.02.307.
  • 15. G. Skoglund, M. Nockert, B. Holst, Viking and early middle ages northern scandinavian textiles proven to be made with hemp, Scientific Reports, vol. 3, (2013) 1–6, doi: 10.1038/srep02686.
  • 16. L. Mwaikambo, M. Ansell, Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization, Journal of Applied Polymer Science, vol. 84, no. 12, (2002) 2222–2234, doi: 10.1002/app.10460.
  • 17. S. Aziz, M. Ansell, The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 – polyester resin matrix, Composites Science and Technology, vol. 64, no. 9, (2004) 1219–1230, doi: 10.1016/j.compscitech.2003.10.001.
  • 18. R. Sepe, F. Bollino, L. Boccarusso, and F. Caputo, “Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites,” Composites Part B: Engineering, vol. 133, (2018) 210–217, doi: 10.1016/j.compositesb.2017.09.030.
  • 19. X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review,” Journal of Polymers and the Environment, vol. 15, no. 1. (2007) 25–33, doi: 10.1007/s10924-006-0042-3.
  • 20. P. Koushki, T. H. Kwok, L. Hof, and R. Wuthrich, “Reinforcing silicone with hemp fiber for additive manufacturing,” Composites Science and Technology, vol. 194 (2020), doi: 10.1016/j.compscitech.2020.108139.
  • 21. American Society for Testing and Materials, ASTM D638-14, Standard Practice for Preparation of Metallographic Specimens, ASTM International, vol. 82, no. C, (2016) 1–15, doi: 10.1520/D0638-14.1.
  • 22. B. Benmokrane, O. Chaallal, and R. Masmoudi, “Glass fibre reinforced plastic (GFRP) rebars for concrete structures,” Construction and Building Materials, vol. 9, no. 6, , (1995) 353–364, doi: 10.1016/0950-0618(95)00048-8.
  • 23. C.-Y. Wang, C.-C. Shih, S.-C. Hong, and W.-C. Hwang, “Rehabilitation of Cracked and Corroded Reinforced Concrete Beams with Fiber-Reinforced Plastic Patches,” Journal of Composites for Construction, vol. 8, no. 3, (2004) 219–228, doi: 10.1061/(asce)1090-0268(2004)8:3(219).
  • 24. J. George, M. S. Sreekala, S. Thomas, J. George, M. S. Sreekala, and S. Thomas, “A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites,” vol. 41, no. 9, (2001) doi.org/10.1063/1.5092888.
  • 25. S. Kain, J. v. Ecker, A. Haider, M. Musso, and A. Petutschnigg, “Effects of the infill pattern on mechanical properties of fused layer modeling (FLM) 3D printed wood/polylactic acid (PLA) composites,” European Journal of Wood and Wood Products, vol. 78, no. 1, (2020), 65–74, doi: 10.1007/s00107-019-01473-0.

Eriyik Biriktirme Yöntemiyle Kenevirle Güçlendirilmiş Polilaktik Asit (PLA) Kompozit Filaman Üretimi

Year 2022, Volume: 50 Issue: 3, 239 - 246, 01.08.2022
https://doi.org/10.15671/hjbc.1032298

Abstract

Polimer matrislerin doğal elyaflar ile güçlendirilmesi mekanik özelliklerde artış sağlayabilir. Termoplastikler, özellikle biyokompozit malzemeler geri dönüştürülebilir olduğundan sürdürülebilir bir ekosisteme katkıda bulunurlar. Kenevir lifleri öğütülmüş ve boyutları küçültülmüştür. Bu çalışmada ağırlıkça %10 kenevir takviyeli polilaktik asit (PLA) matrisli hammadde geliştirilmiştir. Geliştirilen biyokompozit hammaddeden eriyik birleştirme yöntemi (FFF) kullanılarak iki farklı dolgu geometrisinde çekme numuneleri üretilmiş ve mekanik performansları araştırılmıştır. En yüksek çekme dayanımı ortalama %20 artış göstermiştir. Üretilen numuneler optik ve yüzey elektron mikroskobu (SEM) ile incelenmiştir. Ara yüzey etkileşimleri ve fiberlerin homojen olarak dağılması oldukça önemli olup, araştırılmıştır. Çift vidalı bir ekstrüzyon cihazı kullanılmasına rağmen, yüzey geçişleri arasında boşluklar tespit edilmiştir. Bu durum yapısal performansı olumsuz olarak etkilemiştir. Ayrıca kenevir eklenmesi, termal direnci ve kaynama noktasını düşürmekte ve camsı geçiş sıcaklığını yükseltmektedir.

References

  • 1. K. Wong, A. Hernandez, A Review of Additive Manufacturing ISRN Mechanical Engineering, vol. 2012, (2012) 1–10, doi: 10.5402/2012/208760.
  • 2. D. Delgado, Camacho E., Applications of additive manufacturing in the construction industry – A forward-looking review, Automation in Construction, vol. 89, no. October 2017, (2018) 110–119, doi: 10.1016/j.autcon.2017.12.031.
  • 3. E. Vink, K. Rábago, D. Glassner, P. Gruber, “Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production,” Polymer Degradation and Stability, vol. 80, no. 3, (2013) 403–419, doi: 10.1016/S0141-3910(02)00372-5.
  • 4 A. Morão, F. Bie, Life Cycle Impact Assessment of Polylactic Acid (PLA) Produced from Sugarcane in Thailand, Journal of Polymers and the Environment, vol. 27, no. 11, (2019) 2523–2539, doi: 10.1007/s10924-019-01525-9.
  • 5. O. Mohamed, S. Masood, L. Bhowmik, Optimization of fused deposition modeling process parameters : a review of current research and future prospects, (2015) 42–53, doi: 10.1007/s40436-014-0097-7.
  • 6. C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D Printing and Customized Additive Manufacturing, Chemical Reviews, vol. 117, no. 15, (2017) 10212–10290, doi: 10.1021/acs.chemrev.7b00074.
  • 7. V. Mazzanti, M. Luna, R. Pariante, F. Mollica, G. Filippone, Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state, Composites Part A: Applied Science and Manufacturing, vol. 137, (2020), doi: 10.1016/j.compositesa.2020.105990.
  • 8. X. Xiao, V. Chevali, P. Song, D. He, H. Wang, Polylactide/hemp hurd biocomposites as sustainable 3D printing feedstock, Composites Science and Technology, vol. 184, (2019), doi: 10.1016/j.compscitech.2019.107887.
  • 9. F. Sarasini, J. Tirillò, C. Sergi, M. Seghini, L. Cozzarini, N. Graupner, Effect of basalt fibre hybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites, Composite Structures, vol. 188, (2018) 394–406 , doi: 10.1016/j.compstruct.2018.01.046.
  • 10. A. Naughton, M. Fan, J. Bregulla, Fire resistance characterisation of hemp fibre reinforced polyester composites for use in the construction industry, Composites Part B: Engineering, vol. 60, (2014) 546–554, doi: 10.1016/j.compositesb.2013.12.014.
  • 11. H. Hargitai, I. Rácz, D. Anandjiwala, Development of HEMP fiber reinforced polypropylene composites, Journal of Thermoplastic Composite Materials, vol. 21, no. 2, (2008) 165–174, doi: 10.1177/0892705707083949.
  • 12. A. Shahzad, Hemp fiber and its composites - A review, Journal of Composite Materials, vol. 46, no. 8, (2012) 973–986, , doi: 10.1177/0021998311413623.
  • 13. T. Yuanjian, D. Isaac, Impact and fatigue behaviour of hemp fibre composites, Composites Science and Technology, vol. 67, no. 15–16, (2007) 3300–3307, doi: 10.1016/j.compscitech.2007.03.039.
  • 14. A. Corbin, M. Ferreira, A. Labanieh, D. Soulat, Natural fiber composite manufacture using wrapped hemp roving with PA12, in Materials Today: Proceedings, vol. 31, (2019) 329-334. doi: 10.1016/j.matpr.2020.02.307.
  • 15. G. Skoglund, M. Nockert, B. Holst, Viking and early middle ages northern scandinavian textiles proven to be made with hemp, Scientific Reports, vol. 3, (2013) 1–6, doi: 10.1038/srep02686.
  • 16. L. Mwaikambo, M. Ansell, Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization, Journal of Applied Polymer Science, vol. 84, no. 12, (2002) 2222–2234, doi: 10.1002/app.10460.
  • 17. S. Aziz, M. Ansell, The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 – polyester resin matrix, Composites Science and Technology, vol. 64, no. 9, (2004) 1219–1230, doi: 10.1016/j.compscitech.2003.10.001.
  • 18. R. Sepe, F. Bollino, L. Boccarusso, and F. Caputo, “Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites,” Composites Part B: Engineering, vol. 133, (2018) 210–217, doi: 10.1016/j.compositesb.2017.09.030.
  • 19. X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review,” Journal of Polymers and the Environment, vol. 15, no. 1. (2007) 25–33, doi: 10.1007/s10924-006-0042-3.
  • 20. P. Koushki, T. H. Kwok, L. Hof, and R. Wuthrich, “Reinforcing silicone with hemp fiber for additive manufacturing,” Composites Science and Technology, vol. 194 (2020), doi: 10.1016/j.compscitech.2020.108139.
  • 21. American Society for Testing and Materials, ASTM D638-14, Standard Practice for Preparation of Metallographic Specimens, ASTM International, vol. 82, no. C, (2016) 1–15, doi: 10.1520/D0638-14.1.
  • 22. B. Benmokrane, O. Chaallal, and R. Masmoudi, “Glass fibre reinforced plastic (GFRP) rebars for concrete structures,” Construction and Building Materials, vol. 9, no. 6, , (1995) 353–364, doi: 10.1016/0950-0618(95)00048-8.
  • 23. C.-Y. Wang, C.-C. Shih, S.-C. Hong, and W.-C. Hwang, “Rehabilitation of Cracked and Corroded Reinforced Concrete Beams with Fiber-Reinforced Plastic Patches,” Journal of Composites for Construction, vol. 8, no. 3, (2004) 219–228, doi: 10.1061/(asce)1090-0268(2004)8:3(219).
  • 24. J. George, M. S. Sreekala, S. Thomas, J. George, M. S. Sreekala, and S. Thomas, “A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites,” vol. 41, no. 9, (2001) doi.org/10.1063/1.5092888.
  • 25. S. Kain, J. v. Ecker, A. Haider, M. Musso, and A. Petutschnigg, “Effects of the infill pattern on mechanical properties of fused layer modeling (FLM) 3D printed wood/polylactic acid (PLA) composites,” European Journal of Wood and Wood Products, vol. 78, no. 1, (2020), 65–74, doi: 10.1007/s00107-019-01473-0.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Alperen Doğru 0000-0003-3730-3761

Ayberk Sözen 0000-0002-9657-5567

Mehmet Özgür Seydibeyoğlu 0000-0002-2584-7043

Gökdeniz Neşer This is me 0000-0001-9218-0181

Early Pub Date September 1, 2022
Publication Date August 1, 2022
Acceptance Date March 29, 2022
Published in Issue Year 2022 Volume: 50 Issue: 3

Cite

APA Doğru, A., Sözen, A., Seydibeyoğlu, M. Ö., Neşer, G. (2022). Hemp Reinforced Polylactic Acid (PLA) Composite Produced By Fused Filament Fabrication (FFF). Hacettepe Journal of Biology and Chemistry, 50(3), 239-246. https://doi.org/10.15671/hjbc.1032298
AMA Doğru A, Sözen A, Seydibeyoğlu MÖ, Neşer G. Hemp Reinforced Polylactic Acid (PLA) Composite Produced By Fused Filament Fabrication (FFF). HJBC. August 2022;50(3):239-246. doi:10.15671/hjbc.1032298
Chicago Doğru, Alperen, Ayberk Sözen, Mehmet Özgür Seydibeyoğlu, and Gökdeniz Neşer. “Hemp Reinforced Polylactic Acid (PLA) Composite Produced By Fused Filament Fabrication (FFF)”. Hacettepe Journal of Biology and Chemistry 50, no. 3 (August 2022): 239-46. https://doi.org/10.15671/hjbc.1032298.
EndNote Doğru A, Sözen A, Seydibeyoğlu MÖ, Neşer G (August 1, 2022) Hemp Reinforced Polylactic Acid (PLA) Composite Produced By Fused Filament Fabrication (FFF). Hacettepe Journal of Biology and Chemistry 50 3 239–246.
IEEE A. Doğru, A. Sözen, M. Ö. Seydibeyoğlu, and G. Neşer, “Hemp Reinforced Polylactic Acid (PLA) Composite Produced By Fused Filament Fabrication (FFF)”, HJBC, vol. 50, no. 3, pp. 239–246, 2022, doi: 10.15671/hjbc.1032298.
ISNAD Doğru, Alperen et al. “Hemp Reinforced Polylactic Acid (PLA) Composite Produced By Fused Filament Fabrication (FFF)”. Hacettepe Journal of Biology and Chemistry 50/3 (August 2022), 239-246. https://doi.org/10.15671/hjbc.1032298.
JAMA Doğru A, Sözen A, Seydibeyoğlu MÖ, Neşer G. Hemp Reinforced Polylactic Acid (PLA) Composite Produced By Fused Filament Fabrication (FFF). HJBC. 2022;50:239–246.
MLA Doğru, Alperen et al. “Hemp Reinforced Polylactic Acid (PLA) Composite Produced By Fused Filament Fabrication (FFF)”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 3, 2022, pp. 239-46, doi:10.15671/hjbc.1032298.
Vancouver Doğru A, Sözen A, Seydibeyoğlu MÖ, Neşer G. Hemp Reinforced Polylactic Acid (PLA) Composite Produced By Fused Filament Fabrication (FFF). HJBC. 2022;50(3):239-46.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc