Research Article
BibTex RIS Cite

Enjeksiyon Kalıplama ve Erimiş Filament Ekstrüzyonu (EFE) yöntemleri ile üretilen ahşap elyaf takviyeli PLA matris biyo-kompozitlerin karşılaştırılması

Year 2022, Volume: 50 Issue: 3, 215 - 226, 01.08.2022
https://doi.org/10.15671/hjbc.1053764

Abstract

References

  • F.M. Al-Oqla, S.M. Sapuan, Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry, J. Clean. Prod. 66 (2014) 347–354. https://doi.org/10.1016/j.jclepro.2013.10.050.
  • C. Nyambo, A.K. Mohanty, M. Misra, Polylactide-Based Renewable Green Composites from Agricultural Residues and Their Hybrids, Biomacromolecules. 11 (2010) 1654–1660. https://doi.org/10.1021/BM1003114.
  • A. Porras, A. Maranon, Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric, Compos. Part B Eng. 43 (2012) 2782–2788. https://doi.org/10.1016/J.COMPOSITESB.2012.04.039.
  • S.J. Christian, S.L. Billington, Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications, Compos. Part B Eng. 42 (2011) 1920–1928. https://doi.org/10.1016/J.COMPOSITESB.2011.05.039.
  • H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on the tensile properties of natural fiber reinforced polymer composites, Compos. Part B Eng. 42 (2011) 856–873. https://doi.org/10.1016/j.compositesb.2011.01.010.
  • N. Graupner, A.S. Herrmann, J. Müssig, Natural and man-made cellulose fiber-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas, Compos. Part A Appl. Sci. Manuf. 40 (2009) 810–821. https://doi.org/10.1016/J.COMPOSITESA.2009.04.003.
  • E. Lezak, Z. Kulinski, R. Masirek, E. Piorkowska, M. Pracella, K. Gadzinowska, Mechanical and thermal properties of green polylactide composites with natural fillers, Macromol. Biosci. 8 (2008) 1190–1200. https://doi.org/10.1002/MABI.200800040.
  • D. Nabi, J.P. Jog, Natural Fiber Polymer Composites: A Review, Adv. Polym. Technol. 18 (1999) 351–363. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4.
  • X. Li, L. Tabil, S. Panigrahi, W. Crerar, The influence of fiber content on properties of injection molded flax fiber-hdpe biocomposites, Undefined. (2006). https://doi.org/10.13031/2013.22101.
  • R. Malkapuram, V. Kumar, Y. Singh Negi, Recent development in natural fiber reinforced polypropylene composites, J. Reinf. Plast. Compos. 28 (2009) 1169–1189. https://doi.org/10.1177/0731684407087759.
  • M. Kowalczyk, E. Piorkowska, P. Kulpinski, M. Pracella, Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers, Compos. Part A Appl. Sci. Manuf. 42 (2011) 1509–1514. https://doi.org/10.1016/J.COMPOSITESA.2011.07.003.
  • J. Antonio Travieso-Rodriguez, M.D. Zandi, R. Jerez-Mesa, J. Lluma-Fuentes, Fatigue behavior of PLA-wood composite manufactured by fused filament fabrication, J. Mater. Res. Technol. 9 (2020) 8507–8516. https://doi.org/10.1016/J.JMRT.2020.06.003.
  • L. Mahalle, A. Alemdar, M. Mihai, N. Legros, A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites, Int. J. Life Cycle Assess. 19 (2014) 1305–1315. https://doi.org/10.1007/S11367-014-0731-4/TABLES/9.
  • Z.H. Zhu, H.W. Wu, Review on the Preparation Processes of Natural Fiber Reinforced PLA Composites, Mech. Mach. Sci. 99 (2020) 277–281. https://doi.org/10.1007/978-3-030-67958-3_30.
  • A.S. Getme, B. Patel, A Review: Bio-fiber’s as reinforcement in composites of polylactic acid (PLA), Mater. Today Proc. 26 (2020) 2116–2122. https://doi.org/10.1016/J.MATPR.2020.02.457.
  • Z. Liu, Q. Lei, S. Xing, Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM, J. Mater. Res. Technol. 8 (2019) 3741–3751. https://doi.org/10.1016/J.JMRT.2019.06.034.
  • A. Dogru, A. Sozen, G. Neser, M.O. Seydibeyoglu, Effects of Aging and Infill Pattern on Mechanical Properties of Hemp Reinforced PLA Composite Produced by Fused Filament Fabrication (FFF), Appl. Sci. Eng. Prog. (2021). https://doi.org/10.14416/J.ASEP.2021.08.007.
  • A. Mohamed, V.L. Finkenstadt, P. Rayas-Duarte, E. Palmquist Debra, S.H. Gordon, Thermal properties of extruded and injection-molded poly(lactic acid)-based cuphea and lesquerella bio-composites, J. Appl. Polym. Sci. 111 (2009) 114–124. https://doi.org/10.1002/APP.28964.
  • R. Csizmadia, G. Faludi, K. Renner, J. Móczó, B. Pukánszky, PLA/wood biocomposites: Improving composite strength by chemical treatment of the fibers, Compos. Part A Appl. Sci. Manuf. 53 (2013) 46–53. https://doi.org/10.1016/j.compositesa.2013.06.003.
  • T. Ozyhar, F. Baradel, J. Zoppe, Effect of functional mineral additive on processability and material properties of wood-fiber reinforced poly(lactic acid) (PLA) composites, Compos. Part A Appl. Sci. Manuf. 132 (2020) 105827. https://doi.org/10.1016/j.compositesa.2020.105827.
  • K. Okubo, T. Fujii, E.T. Thostenson, Multi-scale hybrid biocomposite: Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose, Compos. Part A Appl. Sci. Manuf. 40 (2009) 469–475. https://doi.org/10.1016/J.COMPOSITESA.2009.01.012.
  • N. Ayrilmis, R. Nagarajan, M.K. Kuzman, Effects of the Face/Core Layer Ratio on the Mechanical Properties of 3D Printed Wood/Polylactic Acid (PLA) Green Biocomposite Panels with a Gyroid Core, Polym. 2020, Vol. 12, Page 2929. 12 (2020) 2929. https://doi.org/10.3390/POLYM12122929.
  • D. Deb, J.M. Jafferson, Natural fibers reinforced FDM 3D printing filaments, Mater. Today Proc. 46 (2021) 1308–1318. https://doi.org/10.1016/J.MATPR.2021.02.397.
  • X. Peng, M. Zhang, Z. Guo, L. Sang, W. Hou, Investigation of processing parameters on tensile performance for FDM-printed carbon fiber reinforced polyamide 6 composites, Compos. Commun. 22 (2020) 100478. https://doi.org/10.1016/J.COCO.2020.100478.
  • J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manuf. 20 (2018) 44–67. https://doi.org/10.1016/j.addma.2017.12.002.
  • S. Ebnesajjad, Injection Molding, Melt Process. Fluoroplastics. (2003) 151–193. https://doi.org/10.1016/B978-188420796-9.50010-2.
  • R. Xu, T. He, Y. Da, Y. Liu, J. Li, C. Chen, Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete, Constr. Build. Mater. 208 (2019) 242–249. https://doi.org/10.1016/J.CONBUILDMAT.2019.03.030.
  • S. Migneault, A. Koubaa, P. Perré, B. Riedl, Effects of wood fiber surface chemistry on strength of wood–plastic composites, Appl. Surf. Sci. 343 (2015) 11–18. https://doi.org/10.1016/j.apsusc.2015.03.010.
  • W. Guo, F. Bao, Z. Wang, Biodegradability of wood fiber/poly(lactic acid) composites:, Http://Dx.Doi.Org/10.1177/0021998312467387. 47 (2012) 3573–3580. https://doi.org/10.1177/0021998312467387.
  • A. Ashori, A. Nourbakhsh, Characteristics of wood–fiber plastic composites made of recycled materials, Waste Manag. 29 (2009) 1291–1295. https://doi.org/10.1016/j.wasman.2008.09.012.
  • S. Kain, J. V. Ecker, A. Haider, M. Musso, A. Petutschnigg, Effects of the infill pattern on mechanical properties of fused layer modeling (FLM) 3D printed wood/polylactic acid (PLA) composites, Eur. J. Wood Wood Prod. 78 (2020) 65–74. https://doi.org/10.1007/S00107-019-01473-0/FIGURES/10.
  • J.M. Chacón, M.Á. Caminero, P.J. Núñez, E. García-Plaza, J.P. Bécar, Effect of nozzle diameter on mechanical and geometric performance of 3D printed carbon fibre-reinforced composites manufactured by fused filament fabrication, Rapid Prototyp. J. 27 (2021) 769–784. https://doi.org/10.1108/RPJ-10-2020-0250/FULL/XML.
  • T. Mulholland, S. Goris, J. Boxleitner, T.A. Osswald, N. Rudolph, Process-induced fiber orientation in fused filament fabrication, J. Compos. Sci. 2 (2018) 1–14. https://doi.org/10.3390/jcs2030045.
  • B.P. Heller, D.E. Smith, D.A. Jack, Effects of extrudate swell and nozzle geometry on fiber orientation in Fused Filament Fabrication nozzle flow, Addit. Manuf. 12 (2016) 252–264. https://doi.org/10.1016/J.ADDMA.2016.06.005.
  • X. Zhang, L. Chen, T. Mulholland, T.A. Osswald, Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling, SN Appl. Sci. 1 (2019) 1–12. https://doi.org/10.1007/S42452-019-0639-5/FIGURES/14.
  • M.A.A. Rehmani, S.A. Jaywant, K.M. Arif, Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems, Micromachines 2021, Vol. 12, Page 14. 12 (2020) 14. https://doi.org/10.3390/MI12010014.
  • M. Nabipour, B. Akhoundi, An experimental study of FDM parameters effects on tensile strength, density, and production time of ABS/Cu composites:, Https://Doi.Org/10.1177/0095244320916838. 53 (2020) 146–164. https://doi.org/10.1177/0095244320916838.
  • M.T. Pandurangan, K. Kanny, Study of curing characteristics of cellulose nanofiber-filled epoxy nanocomposites, Catalysts. 10 (2020). https://doi.org/10.3390/CATAL10080831.

Comparison of wood fiber reinforced PLA matrix bio-composites produced by Injection Molding and Fused Filament Fabrication (FFF) methods

Year 2022, Volume: 50 Issue: 3, 215 - 226, 01.08.2022
https://doi.org/10.15671/hjbc.1053764

Abstract

Plastic materials have a variety of chemical and mechanical properties that will be useful for a wide variety of applications. However, plastic waste creates pollution and poses a great threat due to the problem of non-degradability affecting ecological environments. Thermoset polymers, which are used extensively in the polymer industry today, have recycling problems. This situation creates serious environmental problems. The most important feature of thermoplastic materials is that they can be recycled. The use of thermoplastic polymers creates significant advantages in recycling and environmental issues. The rapid evolution in additive manufacturing provides a new path to the circular economy using recycling. Thermoplastic or thermoset materials can be processed in additive manufacturing.
Additive Manufacturing Methods (AM) are used today in different industries to produce prototypes and even final products. The polymer material is used in 51% of the parts produced with AM. The Fused Filament Fabrication (FFF) method is the most popular method preferred for shaping polymers with AM. The FFF method is a method of extruding a spool of thermoplastic filament through a heated nozzle and melting the material. Also, FFF is known to have low cost and high printing speeds compared to other AM techniques. PLA material, which is a completely bio-based thermoplastic polymer with many desirable properties, including easy processing ability, strength, hardness, and biodegradability, is widely used in material processing by the FFF method.
In this study, the PLA matrix was reinforced with natural fibers to increase the mechanical properties and contribute to recycling. Bio-composite compounds with 15% wood fiber reinforced PLA matrix by weight were prepared. Specimens’ productions were carried out using bio-composite materials, the FFF method, and injection molding methods. Thermal analyzes of the prepared compounds, filaments, and produced specimens were carried out. A decrease in the Tg value of the compound reinforced with natural fiber was observed, while an increase in the Tm value was observed. The Tg value of the specimens produced by the FFF method increased compared to the injection specimens. In addition, the mechanical properties of the specimens produced by FFF, and the injection molding method were compared. It was determined that the stress at break values of the specimens produced by injection were 2 times higher than the specimens produced by FFF. The impact strength of the specimens produced with injection molding is 51.75% higher than the specimens produced with FFF. The bio-composite materials produced in the study were examined under scanning electron microscopy (SEM). Surface interactions and homogeneous fiber distribution between matrix and fiber were investigated.

References

  • F.M. Al-Oqla, S.M. Sapuan, Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry, J. Clean. Prod. 66 (2014) 347–354. https://doi.org/10.1016/j.jclepro.2013.10.050.
  • C. Nyambo, A.K. Mohanty, M. Misra, Polylactide-Based Renewable Green Composites from Agricultural Residues and Their Hybrids, Biomacromolecules. 11 (2010) 1654–1660. https://doi.org/10.1021/BM1003114.
  • A. Porras, A. Maranon, Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric, Compos. Part B Eng. 43 (2012) 2782–2788. https://doi.org/10.1016/J.COMPOSITESB.2012.04.039.
  • S.J. Christian, S.L. Billington, Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications, Compos. Part B Eng. 42 (2011) 1920–1928. https://doi.org/10.1016/J.COMPOSITESB.2011.05.039.
  • H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on the tensile properties of natural fiber reinforced polymer composites, Compos. Part B Eng. 42 (2011) 856–873. https://doi.org/10.1016/j.compositesb.2011.01.010.
  • N. Graupner, A.S. Herrmann, J. Müssig, Natural and man-made cellulose fiber-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas, Compos. Part A Appl. Sci. Manuf. 40 (2009) 810–821. https://doi.org/10.1016/J.COMPOSITESA.2009.04.003.
  • E. Lezak, Z. Kulinski, R. Masirek, E. Piorkowska, M. Pracella, K. Gadzinowska, Mechanical and thermal properties of green polylactide composites with natural fillers, Macromol. Biosci. 8 (2008) 1190–1200. https://doi.org/10.1002/MABI.200800040.
  • D. Nabi, J.P. Jog, Natural Fiber Polymer Composites: A Review, Adv. Polym. Technol. 18 (1999) 351–363. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4.
  • X. Li, L. Tabil, S. Panigrahi, W. Crerar, The influence of fiber content on properties of injection molded flax fiber-hdpe biocomposites, Undefined. (2006). https://doi.org/10.13031/2013.22101.
  • R. Malkapuram, V. Kumar, Y. Singh Negi, Recent development in natural fiber reinforced polypropylene composites, J. Reinf. Plast. Compos. 28 (2009) 1169–1189. https://doi.org/10.1177/0731684407087759.
  • M. Kowalczyk, E. Piorkowska, P. Kulpinski, M. Pracella, Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers, Compos. Part A Appl. Sci. Manuf. 42 (2011) 1509–1514. https://doi.org/10.1016/J.COMPOSITESA.2011.07.003.
  • J. Antonio Travieso-Rodriguez, M.D. Zandi, R. Jerez-Mesa, J. Lluma-Fuentes, Fatigue behavior of PLA-wood composite manufactured by fused filament fabrication, J. Mater. Res. Technol. 9 (2020) 8507–8516. https://doi.org/10.1016/J.JMRT.2020.06.003.
  • L. Mahalle, A. Alemdar, M. Mihai, N. Legros, A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites, Int. J. Life Cycle Assess. 19 (2014) 1305–1315. https://doi.org/10.1007/S11367-014-0731-4/TABLES/9.
  • Z.H. Zhu, H.W. Wu, Review on the Preparation Processes of Natural Fiber Reinforced PLA Composites, Mech. Mach. Sci. 99 (2020) 277–281. https://doi.org/10.1007/978-3-030-67958-3_30.
  • A.S. Getme, B. Patel, A Review: Bio-fiber’s as reinforcement in composites of polylactic acid (PLA), Mater. Today Proc. 26 (2020) 2116–2122. https://doi.org/10.1016/J.MATPR.2020.02.457.
  • Z. Liu, Q. Lei, S. Xing, Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM, J. Mater. Res. Technol. 8 (2019) 3741–3751. https://doi.org/10.1016/J.JMRT.2019.06.034.
  • A. Dogru, A. Sozen, G. Neser, M.O. Seydibeyoglu, Effects of Aging and Infill Pattern on Mechanical Properties of Hemp Reinforced PLA Composite Produced by Fused Filament Fabrication (FFF), Appl. Sci. Eng. Prog. (2021). https://doi.org/10.14416/J.ASEP.2021.08.007.
  • A. Mohamed, V.L. Finkenstadt, P. Rayas-Duarte, E. Palmquist Debra, S.H. Gordon, Thermal properties of extruded and injection-molded poly(lactic acid)-based cuphea and lesquerella bio-composites, J. Appl. Polym. Sci. 111 (2009) 114–124. https://doi.org/10.1002/APP.28964.
  • R. Csizmadia, G. Faludi, K. Renner, J. Móczó, B. Pukánszky, PLA/wood biocomposites: Improving composite strength by chemical treatment of the fibers, Compos. Part A Appl. Sci. Manuf. 53 (2013) 46–53. https://doi.org/10.1016/j.compositesa.2013.06.003.
  • T. Ozyhar, F. Baradel, J. Zoppe, Effect of functional mineral additive on processability and material properties of wood-fiber reinforced poly(lactic acid) (PLA) composites, Compos. Part A Appl. Sci. Manuf. 132 (2020) 105827. https://doi.org/10.1016/j.compositesa.2020.105827.
  • K. Okubo, T. Fujii, E.T. Thostenson, Multi-scale hybrid biocomposite: Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose, Compos. Part A Appl. Sci. Manuf. 40 (2009) 469–475. https://doi.org/10.1016/J.COMPOSITESA.2009.01.012.
  • N. Ayrilmis, R. Nagarajan, M.K. Kuzman, Effects of the Face/Core Layer Ratio on the Mechanical Properties of 3D Printed Wood/Polylactic Acid (PLA) Green Biocomposite Panels with a Gyroid Core, Polym. 2020, Vol. 12, Page 2929. 12 (2020) 2929. https://doi.org/10.3390/POLYM12122929.
  • D. Deb, J.M. Jafferson, Natural fibers reinforced FDM 3D printing filaments, Mater. Today Proc. 46 (2021) 1308–1318. https://doi.org/10.1016/J.MATPR.2021.02.397.
  • X. Peng, M. Zhang, Z. Guo, L. Sang, W. Hou, Investigation of processing parameters on tensile performance for FDM-printed carbon fiber reinforced polyamide 6 composites, Compos. Commun. 22 (2020) 100478. https://doi.org/10.1016/J.COCO.2020.100478.
  • J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manuf. 20 (2018) 44–67. https://doi.org/10.1016/j.addma.2017.12.002.
  • S. Ebnesajjad, Injection Molding, Melt Process. Fluoroplastics. (2003) 151–193. https://doi.org/10.1016/B978-188420796-9.50010-2.
  • R. Xu, T. He, Y. Da, Y. Liu, J. Li, C. Chen, Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete, Constr. Build. Mater. 208 (2019) 242–249. https://doi.org/10.1016/J.CONBUILDMAT.2019.03.030.
  • S. Migneault, A. Koubaa, P. Perré, B. Riedl, Effects of wood fiber surface chemistry on strength of wood–plastic composites, Appl. Surf. Sci. 343 (2015) 11–18. https://doi.org/10.1016/j.apsusc.2015.03.010.
  • W. Guo, F. Bao, Z. Wang, Biodegradability of wood fiber/poly(lactic acid) composites:, Http://Dx.Doi.Org/10.1177/0021998312467387. 47 (2012) 3573–3580. https://doi.org/10.1177/0021998312467387.
  • A. Ashori, A. Nourbakhsh, Characteristics of wood–fiber plastic composites made of recycled materials, Waste Manag. 29 (2009) 1291–1295. https://doi.org/10.1016/j.wasman.2008.09.012.
  • S. Kain, J. V. Ecker, A. Haider, M. Musso, A. Petutschnigg, Effects of the infill pattern on mechanical properties of fused layer modeling (FLM) 3D printed wood/polylactic acid (PLA) composites, Eur. J. Wood Wood Prod. 78 (2020) 65–74. https://doi.org/10.1007/S00107-019-01473-0/FIGURES/10.
  • J.M. Chacón, M.Á. Caminero, P.J. Núñez, E. García-Plaza, J.P. Bécar, Effect of nozzle diameter on mechanical and geometric performance of 3D printed carbon fibre-reinforced composites manufactured by fused filament fabrication, Rapid Prototyp. J. 27 (2021) 769–784. https://doi.org/10.1108/RPJ-10-2020-0250/FULL/XML.
  • T. Mulholland, S. Goris, J. Boxleitner, T.A. Osswald, N. Rudolph, Process-induced fiber orientation in fused filament fabrication, J. Compos. Sci. 2 (2018) 1–14. https://doi.org/10.3390/jcs2030045.
  • B.P. Heller, D.E. Smith, D.A. Jack, Effects of extrudate swell and nozzle geometry on fiber orientation in Fused Filament Fabrication nozzle flow, Addit. Manuf. 12 (2016) 252–264. https://doi.org/10.1016/J.ADDMA.2016.06.005.
  • X. Zhang, L. Chen, T. Mulholland, T.A. Osswald, Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling, SN Appl. Sci. 1 (2019) 1–12. https://doi.org/10.1007/S42452-019-0639-5/FIGURES/14.
  • M.A.A. Rehmani, S.A. Jaywant, K.M. Arif, Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems, Micromachines 2021, Vol. 12, Page 14. 12 (2020) 14. https://doi.org/10.3390/MI12010014.
  • M. Nabipour, B. Akhoundi, An experimental study of FDM parameters effects on tensile strength, density, and production time of ABS/Cu composites:, Https://Doi.Org/10.1177/0095244320916838. 53 (2020) 146–164. https://doi.org/10.1177/0095244320916838.
  • M.T. Pandurangan, K. Kanny, Study of curing characteristics of cellulose nanofiber-filled epoxy nanocomposites, Catalysts. 10 (2020). https://doi.org/10.3390/CATAL10080831.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Alperen Doğru 0000-0003-3730-3761

Seçil Yılancıoğlu This is me

Görkem Ülkü This is me 0000-0002-2745-9925

Buket Şentürk Turan This is me 0000-0002-9201-2783

Mehmet Özgür Seydibeyoğlu 0000-0002-2584-7043

Early Pub Date September 1, 2022
Publication Date August 1, 2022
Acceptance Date March 8, 2022
Published in Issue Year 2022 Volume: 50 Issue: 3

Cite

APA Doğru, A., Yılancıoğlu, S., Ülkü, G., Şentürk Turan, B., et al. (2022). Comparison of wood fiber reinforced PLA matrix bio-composites produced by Injection Molding and Fused Filament Fabrication (FFF) methods. Hacettepe Journal of Biology and Chemistry, 50(3), 215-226. https://doi.org/10.15671/hjbc.1053764
AMA Doğru A, Yılancıoğlu S, Ülkü G, Şentürk Turan B, Seydibeyoğlu MÖ. Comparison of wood fiber reinforced PLA matrix bio-composites produced by Injection Molding and Fused Filament Fabrication (FFF) methods. HJBC. August 2022;50(3):215-226. doi:10.15671/hjbc.1053764
Chicago Doğru, Alperen, Seçil Yılancıoğlu, Görkem Ülkü, Buket Şentürk Turan, and Mehmet Özgür Seydibeyoğlu. “Comparison of Wood Fiber Reinforced PLA Matrix Bio-Composites Produced by Injection Molding and Fused Filament Fabrication (FFF) Methods”. Hacettepe Journal of Biology and Chemistry 50, no. 3 (August 2022): 215-26. https://doi.org/10.15671/hjbc.1053764.
EndNote Doğru A, Yılancıoğlu S, Ülkü G, Şentürk Turan B, Seydibeyoğlu MÖ (August 1, 2022) Comparison of wood fiber reinforced PLA matrix bio-composites produced by Injection Molding and Fused Filament Fabrication (FFF) methods. Hacettepe Journal of Biology and Chemistry 50 3 215–226.
IEEE A. Doğru, S. Yılancıoğlu, G. Ülkü, B. Şentürk Turan, and M. Ö. Seydibeyoğlu, “Comparison of wood fiber reinforced PLA matrix bio-composites produced by Injection Molding and Fused Filament Fabrication (FFF) methods”, HJBC, vol. 50, no. 3, pp. 215–226, 2022, doi: 10.15671/hjbc.1053764.
ISNAD Doğru, Alperen et al. “Comparison of Wood Fiber Reinforced PLA Matrix Bio-Composites Produced by Injection Molding and Fused Filament Fabrication (FFF) Methods”. Hacettepe Journal of Biology and Chemistry 50/3 (August 2022), 215-226. https://doi.org/10.15671/hjbc.1053764.
JAMA Doğru A, Yılancıoğlu S, Ülkü G, Şentürk Turan B, Seydibeyoğlu MÖ. Comparison of wood fiber reinforced PLA matrix bio-composites produced by Injection Molding and Fused Filament Fabrication (FFF) methods. HJBC. 2022;50:215–226.
MLA Doğru, Alperen et al. “Comparison of Wood Fiber Reinforced PLA Matrix Bio-Composites Produced by Injection Molding and Fused Filament Fabrication (FFF) Methods”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 3, 2022, pp. 215-26, doi:10.15671/hjbc.1053764.
Vancouver Doğru A, Yılancıoğlu S, Ülkü G, Şentürk Turan B, Seydibeyoğlu MÖ. Comparison of wood fiber reinforced PLA matrix bio-composites produced by Injection Molding and Fused Filament Fabrication (FFF) methods. HJBC. 2022;50(3):215-26.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc