Research Article
BibTex RIS Cite

How mesenchymal stem cell conditioned media affect the HeLa cells on Wnt/beta-catenin signaling, Notch-1 signaling, and apoptosis?

Year 2022, Volume: 50 Issue: 4, 367 - 375, 09.10.2022
https://doi.org/10.15671/hjbc.1001427

Abstract

This study aims to investigate the influence of mesenchymal stem cells (MSCs) cell-conditioned media (MSCs-CM) on the Wnt/beta-catenin and Notch-1 signaling as well as the apoptosis in cervical cancer cells. Conditioned media of characterized MSCs were freshly collected and filtered before use. HeLa cells cultured standard conditions and treated with MSCs-CM 24, 48, 72 hours. Untreated cells serve as a control. Cell viability measured with MTT assay for all incubation periods. Immunocytochemical staining of beta-catenin, Notch-1 and cleaved caspase 3 were performed for each time-point. MTT cell viability, AO/PI, and immunocytochemical staining of cleaved caspase 3 results showed that through all incubation periods, there was no statistically significant difference between the MSCs-CM treated HeLa cells and the controls (p>0.05). Beta-catenin immunoreactivity was upregulated following treatment from 24 hours to 48 and 72 hours (p<0.001), however a significant decrease in Notch-1 receptor expression after MSCs-CM treatment independent of time (p<0.001). This study demonstrated that MSCs-CM has no cytotoxic and proliferative effects on HeLa cells. However, treatment with MSCs-CM enhanced the activity of Wnt/beta-catenin signaling via the accumulation of beta-catenin and decreased Notch-1 signaling in HeLa cells. Further analyses that identify regulatory factors of these pathways may provide promising opportunities for cervical cancer therapy.

References

  • 1. J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, DM. Parkin, D. Forman, F. Bray, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer, 136 (2015) E359-E386.
  • 2. HG. Donmez, A. Tanacan, C. Unal, E. Fadiloglu, SC. Onder, O. Portakal, MS. Beksac, Human papillomavirus infection and autoimmune disorders: a tertiary center experience, Pathog. Dis., 77 (2019) ftz028.
  • 3. A. Gadducci, R. Tana, S. Cosio, L. Cionini, Treatment options in recurrent cervical cancer (Review), Oncol. Lett., 1 (2010) 3-11.
  • 4. H. zur Hausen, Human papillomaviruses and their possible role in squamous cell carcinomas, Curr. Top. Microbiol. Immunol., 78 (1977) 1-30.
  • 5. J. Doorbar, N. Egawa, H. Griffin, C. Kranjec, I. Murakami, Human papillomavirus molecular biology and disease association, Rev. Med. Virol., 25 Suppl 1 (2015) 2-23.
  • 6. B. Wang, X. Li, L. Liu, M. Wang, β-Catenin: oncogenic role and therapeutic target in cervical cancer, Biol. Res., 53 (2020), 33.
  • 7. A. Uren, S. Fallen, H. Yuan, A. Usubutun, T. Küçükali, R. Schlegel, JA. Toretsky, Activation of the canonical Wnt pathway during genital keratinocyte transformation: A model for cervical cancer progression, Cancer Res., 65 (2015) 6199-6206.
  • 8. S. Gupta, P. Kumar, BC. Das, HPV: Molecular pathways and targets, Curr. Probl. Cancer., 42 (2018) 161-174.
  • 9. C. Rong, Y. Feng, Z. Ye, Notch is a critical regulator in cervical cancer by regulating Numb splicing, Oncol. Lett., 13 (2017) 2465-2470.
  • 10. MF. Pittenger, AM. Mackay, SC. Beck, RK. Jaiswal, R. Douglas, JD. Mosca, MA. Moormann, DW. Simonetti, S. Craig, DR. Marshak, Multilineage potential of adult human mesenchymal stem cells, Science, 284 (1999) 143-147.
  • 11. S. Morrison, Advancing stem cell science and translation, Stem Cell Rep., 6 (1999) 785-786.
  • 12. XX. Jiang, Y. Zhang, B. Liu, SX. Zhang, Y. Wu, XD. Yu, N. Mao, Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells, Blood, 105 (2005) 4120–4126.
  • 13. SJ. Morrison, AC. Spradling, Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life, Cell, 132 (2008) 598-611.
  • 14. L. Timmers, SK. Lim, F. Arslan, JS. Armstrong, IE. Hoefer, PA. Doevendans, JJ. Piek, RM. El Oakley, A. Choo, CN. Lee, G. Pasterkamp, DPV. de Kleijn, Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium, Stem Cell Res., 1 (2008) 129-137.
  • 15. L. Maertens, C. Erpicum, B. Detry, S. Blacher, B. Lenoir, O. Carnet, C. Péqueux, D. Cataldo, J. Lecomte, J. Paupert, A. Noel, A, Bone marrow-derived mesenchymal stem cells drive lymphangiogenesis, PLoS One, 9 (2014) e106976.
  • 16. H. Sevim, YÇ. Kocaefe, MA. Onur, D. Uçkan-Çetinkaya, ÖA. Gürpınar, Bone marrow derived mesenchymal stem cells ameliorate inflammatory response in an in vitro model of familial hemophagocytic lymphohistiocytosis 2, Stem Cell Res. Ther., 9 (2018) 198.
  • 17. A. Joseph, I. Baiju, IA. Bhat, S. Pandey, M. Bharti, M. Verma, A. Pratap Singh, MM. Ansari, V. Chandra, G. Saikumar, Amarpal, G. Taru Sharma, Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing, J. Cell Physiol., 235 (2020) 5555-5569.
  • 18. HJ. Kim, JH. Lee, SH. Kim, Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: Secretion of neurotrophic factors and inhibition of apoptosis, J Neurotrauma, 27 (2010) 131-138.
  • 19. K. Drommelschmidt, S. Prager, I. Bendix, M. Keller, PA. Horn, AK. Ludwig, S. Radtke, B. Giebel, U. Felderhoff-Muser, MSC-concentrated supernatant: A novel therapeutical approach in inflammation-induced preterm brain injury? Archives of Disease in Childhood, 97 (2012) A48.
  • 20. B. Feng, L. Chen, L, Review of mesenchymal stem cells and tumors: Executioner or coconspirator? Cancer Biother. Radiopharm., 24 (2009) 717-721.
  • 21. F. Marofi, G. Vahedi, A. Biglari, A. Esmaeilzadeh, SS. Athari, Mesenchymal stromal/stem cells: A new era in the cell-based targeted gene therapy of cancer, Front. Immunol., 8 (2017) 1770.
  • 22. JR. Lavoie, M. Rosu-Myles, Uncovering the secretes of mesenchymal stem cells, Biochimie., 95 (2013) 2212-2221.
  • 23. B. Huang, X. Cheng, H. Wang, W. Huang, Z. Ga Hu, D. Wang, K. Zhang, H. Zhang, Z. Xue, Y. Da, N. Zhang, Y. Hu, Z. Yao, L. Qiao, F. Gao, R. Zhang, Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively, J. Transl. Med., 14 (2016) 1-12.
  • 24. B. Chen, Y. Ni, J. Liu, Y. Zhang, F. Yan, Bone marrow-derived mesenchymal stem cells exert diverse effects on different macrophage subsets, Stem Cells Int., 2018 (2018) 1-9.
  • 25. J. Plumas, L. Chaperot, MJ. Richard, JP. Molens, JC, Bensa, MC. Favrot, Mesenchymal stem cells induce apoptosis of activated T cells, Leukemia, 19 (2005) 1597-1604.
  • 26. B. Sun, KH. Roh, JR. Park, SR. Lee, SB. Park, JW. Jung, SK. Kang, YS. Lee, KS. Kang, Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model, Cytotherapy, 11 (2019) 289-298.
  • 27. Y. Liu, L. Lin, R. Zou, C. Wen, Z. Wang, F. Lin, MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis, Cell Cycle, 17 (2018) 2411-2422.
  • 28. G. Dontu, KW. Jackson, E. McNicholas, MJ. Kawamura, WM. Abdallah, MS. Wicha, Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells, Breast Cancer Res., 6 (2004) R605.
  • 29. IS. Hiremath, A. Goel, S. Warrier, AP. Kumar, G. Sethi, M. Garg, The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies, J. Cell Physiol., (2021), Doi: 10.1002/jcp.30561.
  • 30. HG. Donmez, S. Demirezen, MS. Beksac, The relationship between beta-catenin and apoptosis: A cytological and immunocytochemical examination. Tissue Cell, 48 (2016) 160–167.
  • 31. HG. Dönmez, S. Demirezen, MS. Beksac, Detection of the Wnt/Beta-catenin signaling activity by using immunocytochemical technique in cervical smears. Gynecol. Obstet. Reprod. Med., 19 (2013) 91-5.
  • 32. NG. Yousif, AM. Sadiq, MG. Yousif, RH. Al-Mudhafar, JJ. Al-Baghdadi, N. Hadi, Notch1 ligand signaling pathway activated in cervical cancer: poor prognosis with high-level JAG1/Notch1, Arch. Gynecol. Obstet., 292 (2015) 899-904.
  • 33. H. Ishiguro, T. Okubo, Y. Kuwabara, M. Kimura, A. Mitsui, N. Sugito, R. Ogawa, T. Katada, T. Tanaka, M. Shiozaki, K. Mizoguchi, Y. Samoto, Y. Matsuo, H. Takahashi, S. Takiguchi, NOTCH1 activates the Wnt/β-catenin signaling pathway in colon cancer. Oncotarget, 8 (2017) 60378-60389.
  • 34. EB. Braune, A. Seshire, U. Lendahl, Notch and Wnt dysregulation and its relevance for breast cancer and tumor initiation, Biomedicines, 6 (2018) 101.
  • 35. RT. Cox, C. Kirkpatrick, M. Peifer, Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis, J. Cell Biol., 134 (1996) 133-48.
  • 36. E. Ayala‑Calvillo, LH. Mojica‑Vazquez, A. Garcia‑Carranca, L. Gonzalez‑Maya, Wnt/β‑catenin pathway activation and silencing of the APC gene in HPV‑positive human cervical cancer‑derived cells, Mol. Med. Rep., 17 (2017) 200-208.
  • 37. C. Pérez-Plasencia, A. Duenas-Gonzalez, B. Alatorre-Tavera, Second hit in cervical carcinogenesis process: involvement of wnt/beta-catenin pathway, Int. Arch. Med. 1 (2008) 10.
  • 38. C. Pérez-Plasencia, G. Vázquez-Ortiz, R. López-Romero, P. Piña-Sanchez, J. Moreno, M. Salcedo, Genome wide expression analysis in HPV16 Cervical Cancer: Identification of altered metabolic pathways, Infect. Agent. Cancer, 2 (2007) 1–10.
  • 39. NC. Popescu, JA. DiPaolo, SC. Amsbaugh, Integration sites of human papillomavirus 18 DNA sequences on HeLa cell chromosomes, Cytogenet. Cell Genet., 44 (1987) 58-62.
  • 40. SL. Etheridge, GJ. Spencer, DJ. Heath, PG. Genever, Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells, Stem Cells, 22 (2004) 849-860.
  • 41. Y. Zhao, SL. Gibb, J. Zhao, AN. Moore, MJ. Hylin, T. Menge, H. Xue, G. Baimukanova, D. Potter, EM. Johnson, JB. Holcomb, CS Jr. Cox, PK. Dash, S. Pati, Wnt3a, a protein secreted by mesenchymal stem cells is neuroprotective and promotes neurocognitive recovery following traumatic brain injury, Stem Cells, 34 (2016) 1263-72.
  • 42. T. Palomero, WK. Lim, DT. Odom, ML. Sulis, PJ. Real, A. Margolin, KC. Barnes, J. O'Neil, D. Neuberg, AP. Weng, JC. Aster, F. Sigaux, J. Soulier, AT. Look, RA. Young, A. Califano, AA. Ferrando, NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth, Proc. Natl. Acad. Sci. USA., 103 (2006) 18261-18266.
  • 43. AP. Weng, JM. Millholland, Y. Yashiro-Ohtani, ML. Arcangeli, A. Lau, C. Wai, C. Del Bianco, CG. Rodriguez, H. Sai, J. Tobias, Y. Li, MS. Wolfe, C. Shachaf, D. Felsher, SC. Blacklow, WS. Pear, JC. Aster, JC, c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma, Genes Develop., 20 (2006) 2096-2109.
  • 44. TT. Maliekal, J. Bajaj, V. Giri, D. Subramanyam, S. Krishna, The role of Notch signaling in human cervical cancer: implications for solid tumors, Oncogene, 27 (2008) 5110-5114.
  • 45. P. Zagouras, S. Stifani, CM. Blaumueller, ML. Carcangiu, S. Artavanis-Tsakonas, S, Alterations in Notch signaling in neoplastic lesions of the human cervix, Proc. Natl. Acad. Sci. USA., 92 (1995) 6414-6418.
  • 46. H. Yu, X. Zhao, S. Huang, L. Jian, G. Qian, S. Ge, Blocking Notch1 signaling by RNA interference can induce growth inhibition in HeLa cells, Int. J. Gynecol. Cancer, 17 (2007) 511-516.
  • 47. F. Ugarte, MF. Ryser, S. Thieme, M. Bornhaeuser, S. Brenner, Role of Jagged/Notch signaling in the cell fate determination of bone marrow human mesenchymal stem cells, Blood, 110 (2007) 1923.
  • 48. DY. Tian, XR. Jin, X. Zeng, Y. Wang, Notch signaling in endothelial cells: Is it the therapeutic target for vascular neointimal hyperplasia? Int. J. Mol. Sci., 18 (2017) 1615.
  • 49. CT. Li, JX. Liu, B. Yu, R. Liu, C. Dong, SJ. Li, Notch signaling represses hypoxia-inducible factor-1α-induced activation of Wnt/β-catenin signaling in osteoblasts under cobalt-mimicked hypoxia, Mol. Med. Rep., 14 (2016) 689-696.
  • 50. A. Acar, A. Hidalgo-Sastre, MK. Leverentz, CG. Mills, S. Woodcock, M. Baron, GM. Collu, K. Brennan, Inhibition of Wnt signalling by Notch via two distinct mechanisms, Sci. Rep., 11 (2021) 9096.
Year 2022, Volume: 50 Issue: 4, 367 - 375, 09.10.2022
https://doi.org/10.15671/hjbc.1001427

Abstract

References

  • 1. J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, DM. Parkin, D. Forman, F. Bray, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer, 136 (2015) E359-E386.
  • 2. HG. Donmez, A. Tanacan, C. Unal, E. Fadiloglu, SC. Onder, O. Portakal, MS. Beksac, Human papillomavirus infection and autoimmune disorders: a tertiary center experience, Pathog. Dis., 77 (2019) ftz028.
  • 3. A. Gadducci, R. Tana, S. Cosio, L. Cionini, Treatment options in recurrent cervical cancer (Review), Oncol. Lett., 1 (2010) 3-11.
  • 4. H. zur Hausen, Human papillomaviruses and their possible role in squamous cell carcinomas, Curr. Top. Microbiol. Immunol., 78 (1977) 1-30.
  • 5. J. Doorbar, N. Egawa, H. Griffin, C. Kranjec, I. Murakami, Human papillomavirus molecular biology and disease association, Rev. Med. Virol., 25 Suppl 1 (2015) 2-23.
  • 6. B. Wang, X. Li, L. Liu, M. Wang, β-Catenin: oncogenic role and therapeutic target in cervical cancer, Biol. Res., 53 (2020), 33.
  • 7. A. Uren, S. Fallen, H. Yuan, A. Usubutun, T. Küçükali, R. Schlegel, JA. Toretsky, Activation of the canonical Wnt pathway during genital keratinocyte transformation: A model for cervical cancer progression, Cancer Res., 65 (2015) 6199-6206.
  • 8. S. Gupta, P. Kumar, BC. Das, HPV: Molecular pathways and targets, Curr. Probl. Cancer., 42 (2018) 161-174.
  • 9. C. Rong, Y. Feng, Z. Ye, Notch is a critical regulator in cervical cancer by regulating Numb splicing, Oncol. Lett., 13 (2017) 2465-2470.
  • 10. MF. Pittenger, AM. Mackay, SC. Beck, RK. Jaiswal, R. Douglas, JD. Mosca, MA. Moormann, DW. Simonetti, S. Craig, DR. Marshak, Multilineage potential of adult human mesenchymal stem cells, Science, 284 (1999) 143-147.
  • 11. S. Morrison, Advancing stem cell science and translation, Stem Cell Rep., 6 (1999) 785-786.
  • 12. XX. Jiang, Y. Zhang, B. Liu, SX. Zhang, Y. Wu, XD. Yu, N. Mao, Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells, Blood, 105 (2005) 4120–4126.
  • 13. SJ. Morrison, AC. Spradling, Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life, Cell, 132 (2008) 598-611.
  • 14. L. Timmers, SK. Lim, F. Arslan, JS. Armstrong, IE. Hoefer, PA. Doevendans, JJ. Piek, RM. El Oakley, A. Choo, CN. Lee, G. Pasterkamp, DPV. de Kleijn, Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium, Stem Cell Res., 1 (2008) 129-137.
  • 15. L. Maertens, C. Erpicum, B. Detry, S. Blacher, B. Lenoir, O. Carnet, C. Péqueux, D. Cataldo, J. Lecomte, J. Paupert, A. Noel, A, Bone marrow-derived mesenchymal stem cells drive lymphangiogenesis, PLoS One, 9 (2014) e106976.
  • 16. H. Sevim, YÇ. Kocaefe, MA. Onur, D. Uçkan-Çetinkaya, ÖA. Gürpınar, Bone marrow derived mesenchymal stem cells ameliorate inflammatory response in an in vitro model of familial hemophagocytic lymphohistiocytosis 2, Stem Cell Res. Ther., 9 (2018) 198.
  • 17. A. Joseph, I. Baiju, IA. Bhat, S. Pandey, M. Bharti, M. Verma, A. Pratap Singh, MM. Ansari, V. Chandra, G. Saikumar, Amarpal, G. Taru Sharma, Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing, J. Cell Physiol., 235 (2020) 5555-5569.
  • 18. HJ. Kim, JH. Lee, SH. Kim, Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: Secretion of neurotrophic factors and inhibition of apoptosis, J Neurotrauma, 27 (2010) 131-138.
  • 19. K. Drommelschmidt, S. Prager, I. Bendix, M. Keller, PA. Horn, AK. Ludwig, S. Radtke, B. Giebel, U. Felderhoff-Muser, MSC-concentrated supernatant: A novel therapeutical approach in inflammation-induced preterm brain injury? Archives of Disease in Childhood, 97 (2012) A48.
  • 20. B. Feng, L. Chen, L, Review of mesenchymal stem cells and tumors: Executioner or coconspirator? Cancer Biother. Radiopharm., 24 (2009) 717-721.
  • 21. F. Marofi, G. Vahedi, A. Biglari, A. Esmaeilzadeh, SS. Athari, Mesenchymal stromal/stem cells: A new era in the cell-based targeted gene therapy of cancer, Front. Immunol., 8 (2017) 1770.
  • 22. JR. Lavoie, M. Rosu-Myles, Uncovering the secretes of mesenchymal stem cells, Biochimie., 95 (2013) 2212-2221.
  • 23. B. Huang, X. Cheng, H. Wang, W. Huang, Z. Ga Hu, D. Wang, K. Zhang, H. Zhang, Z. Xue, Y. Da, N. Zhang, Y. Hu, Z. Yao, L. Qiao, F. Gao, R. Zhang, Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively, J. Transl. Med., 14 (2016) 1-12.
  • 24. B. Chen, Y. Ni, J. Liu, Y. Zhang, F. Yan, Bone marrow-derived mesenchymal stem cells exert diverse effects on different macrophage subsets, Stem Cells Int., 2018 (2018) 1-9.
  • 25. J. Plumas, L. Chaperot, MJ. Richard, JP. Molens, JC, Bensa, MC. Favrot, Mesenchymal stem cells induce apoptosis of activated T cells, Leukemia, 19 (2005) 1597-1604.
  • 26. B. Sun, KH. Roh, JR. Park, SR. Lee, SB. Park, JW. Jung, SK. Kang, YS. Lee, KS. Kang, Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model, Cytotherapy, 11 (2019) 289-298.
  • 27. Y. Liu, L. Lin, R. Zou, C. Wen, Z. Wang, F. Lin, MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis, Cell Cycle, 17 (2018) 2411-2422.
  • 28. G. Dontu, KW. Jackson, E. McNicholas, MJ. Kawamura, WM. Abdallah, MS. Wicha, Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells, Breast Cancer Res., 6 (2004) R605.
  • 29. IS. Hiremath, A. Goel, S. Warrier, AP. Kumar, G. Sethi, M. Garg, The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies, J. Cell Physiol., (2021), Doi: 10.1002/jcp.30561.
  • 30. HG. Donmez, S. Demirezen, MS. Beksac, The relationship between beta-catenin and apoptosis: A cytological and immunocytochemical examination. Tissue Cell, 48 (2016) 160–167.
  • 31. HG. Dönmez, S. Demirezen, MS. Beksac, Detection of the Wnt/Beta-catenin signaling activity by using immunocytochemical technique in cervical smears. Gynecol. Obstet. Reprod. Med., 19 (2013) 91-5.
  • 32. NG. Yousif, AM. Sadiq, MG. Yousif, RH. Al-Mudhafar, JJ. Al-Baghdadi, N. Hadi, Notch1 ligand signaling pathway activated in cervical cancer: poor prognosis with high-level JAG1/Notch1, Arch. Gynecol. Obstet., 292 (2015) 899-904.
  • 33. H. Ishiguro, T. Okubo, Y. Kuwabara, M. Kimura, A. Mitsui, N. Sugito, R. Ogawa, T. Katada, T. Tanaka, M. Shiozaki, K. Mizoguchi, Y. Samoto, Y. Matsuo, H. Takahashi, S. Takiguchi, NOTCH1 activates the Wnt/β-catenin signaling pathway in colon cancer. Oncotarget, 8 (2017) 60378-60389.
  • 34. EB. Braune, A. Seshire, U. Lendahl, Notch and Wnt dysregulation and its relevance for breast cancer and tumor initiation, Biomedicines, 6 (2018) 101.
  • 35. RT. Cox, C. Kirkpatrick, M. Peifer, Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis, J. Cell Biol., 134 (1996) 133-48.
  • 36. E. Ayala‑Calvillo, LH. Mojica‑Vazquez, A. Garcia‑Carranca, L. Gonzalez‑Maya, Wnt/β‑catenin pathway activation and silencing of the APC gene in HPV‑positive human cervical cancer‑derived cells, Mol. Med. Rep., 17 (2017) 200-208.
  • 37. C. Pérez-Plasencia, A. Duenas-Gonzalez, B. Alatorre-Tavera, Second hit in cervical carcinogenesis process: involvement of wnt/beta-catenin pathway, Int. Arch. Med. 1 (2008) 10.
  • 38. C. Pérez-Plasencia, G. Vázquez-Ortiz, R. López-Romero, P. Piña-Sanchez, J. Moreno, M. Salcedo, Genome wide expression analysis in HPV16 Cervical Cancer: Identification of altered metabolic pathways, Infect. Agent. Cancer, 2 (2007) 1–10.
  • 39. NC. Popescu, JA. DiPaolo, SC. Amsbaugh, Integration sites of human papillomavirus 18 DNA sequences on HeLa cell chromosomes, Cytogenet. Cell Genet., 44 (1987) 58-62.
  • 40. SL. Etheridge, GJ. Spencer, DJ. Heath, PG. Genever, Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells, Stem Cells, 22 (2004) 849-860.
  • 41. Y. Zhao, SL. Gibb, J. Zhao, AN. Moore, MJ. Hylin, T. Menge, H. Xue, G. Baimukanova, D. Potter, EM. Johnson, JB. Holcomb, CS Jr. Cox, PK. Dash, S. Pati, Wnt3a, a protein secreted by mesenchymal stem cells is neuroprotective and promotes neurocognitive recovery following traumatic brain injury, Stem Cells, 34 (2016) 1263-72.
  • 42. T. Palomero, WK. Lim, DT. Odom, ML. Sulis, PJ. Real, A. Margolin, KC. Barnes, J. O'Neil, D. Neuberg, AP. Weng, JC. Aster, F. Sigaux, J. Soulier, AT. Look, RA. Young, A. Califano, AA. Ferrando, NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth, Proc. Natl. Acad. Sci. USA., 103 (2006) 18261-18266.
  • 43. AP. Weng, JM. Millholland, Y. Yashiro-Ohtani, ML. Arcangeli, A. Lau, C. Wai, C. Del Bianco, CG. Rodriguez, H. Sai, J. Tobias, Y. Li, MS. Wolfe, C. Shachaf, D. Felsher, SC. Blacklow, WS. Pear, JC. Aster, JC, c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma, Genes Develop., 20 (2006) 2096-2109.
  • 44. TT. Maliekal, J. Bajaj, V. Giri, D. Subramanyam, S. Krishna, The role of Notch signaling in human cervical cancer: implications for solid tumors, Oncogene, 27 (2008) 5110-5114.
  • 45. P. Zagouras, S. Stifani, CM. Blaumueller, ML. Carcangiu, S. Artavanis-Tsakonas, S, Alterations in Notch signaling in neoplastic lesions of the human cervix, Proc. Natl. Acad. Sci. USA., 92 (1995) 6414-6418.
  • 46. H. Yu, X. Zhao, S. Huang, L. Jian, G. Qian, S. Ge, Blocking Notch1 signaling by RNA interference can induce growth inhibition in HeLa cells, Int. J. Gynecol. Cancer, 17 (2007) 511-516.
  • 47. F. Ugarte, MF. Ryser, S. Thieme, M. Bornhaeuser, S. Brenner, Role of Jagged/Notch signaling in the cell fate determination of bone marrow human mesenchymal stem cells, Blood, 110 (2007) 1923.
  • 48. DY. Tian, XR. Jin, X. Zeng, Y. Wang, Notch signaling in endothelial cells: Is it the therapeutic target for vascular neointimal hyperplasia? Int. J. Mol. Sci., 18 (2017) 1615.
  • 49. CT. Li, JX. Liu, B. Yu, R. Liu, C. Dong, SJ. Li, Notch signaling represses hypoxia-inducible factor-1α-induced activation of Wnt/β-catenin signaling in osteoblasts under cobalt-mimicked hypoxia, Mol. Med. Rep., 14 (2016) 689-696.
  • 50. A. Acar, A. Hidalgo-Sastre, MK. Leverentz, CG. Mills, S. Woodcock, M. Baron, GM. Collu, K. Brennan, Inhibition of Wnt signalling by Notch via two distinct mechanisms, Sci. Rep., 11 (2021) 9096.
There are 50 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Hanife Guler Donmez 0000-0002-7413-4939

Handan Sevim Akan 0000-0002-8511-5258

Publication Date October 9, 2022
Acceptance Date February 28, 2022
Published in Issue Year 2022 Volume: 50 Issue: 4

Cite

APA Donmez, H. G., & Sevim Akan, H. (2022). How mesenchymal stem cell conditioned media affect the HeLa cells on Wnt/beta-catenin signaling, Notch-1 signaling, and apoptosis?. Hacettepe Journal of Biology and Chemistry, 50(4), 367-375. https://doi.org/10.15671/hjbc.1001427
AMA Donmez HG, Sevim Akan H. How mesenchymal stem cell conditioned media affect the HeLa cells on Wnt/beta-catenin signaling, Notch-1 signaling, and apoptosis?. HJBC. October 2022;50(4):367-375. doi:10.15671/hjbc.1001427
Chicago Donmez, Hanife Guler, and Handan Sevim Akan. “How Mesenchymal Stem Cell Conditioned Media Affect the HeLa Cells on Wnt/Beta-Catenin Signaling, Notch-1 Signaling, and Apoptosis?”. Hacettepe Journal of Biology and Chemistry 50, no. 4 (October 2022): 367-75. https://doi.org/10.15671/hjbc.1001427.
EndNote Donmez HG, Sevim Akan H (October 1, 2022) How mesenchymal stem cell conditioned media affect the HeLa cells on Wnt/beta-catenin signaling, Notch-1 signaling, and apoptosis?. Hacettepe Journal of Biology and Chemistry 50 4 367–375.
IEEE H. G. Donmez and H. Sevim Akan, “How mesenchymal stem cell conditioned media affect the HeLa cells on Wnt/beta-catenin signaling, Notch-1 signaling, and apoptosis?”, HJBC, vol. 50, no. 4, pp. 367–375, 2022, doi: 10.15671/hjbc.1001427.
ISNAD Donmez, Hanife Guler - Sevim Akan, Handan. “How Mesenchymal Stem Cell Conditioned Media Affect the HeLa Cells on Wnt/Beta-Catenin Signaling, Notch-1 Signaling, and Apoptosis?”. Hacettepe Journal of Biology and Chemistry 50/4 (October 2022), 367-375. https://doi.org/10.15671/hjbc.1001427.
JAMA Donmez HG, Sevim Akan H. How mesenchymal stem cell conditioned media affect the HeLa cells on Wnt/beta-catenin signaling, Notch-1 signaling, and apoptosis?. HJBC. 2022;50:367–375.
MLA Donmez, Hanife Guler and Handan Sevim Akan. “How Mesenchymal Stem Cell Conditioned Media Affect the HeLa Cells on Wnt/Beta-Catenin Signaling, Notch-1 Signaling, and Apoptosis?”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 4, 2022, pp. 367-75, doi:10.15671/hjbc.1001427.
Vancouver Donmez HG, Sevim Akan H. How mesenchymal stem cell conditioned media affect the HeLa cells on Wnt/beta-catenin signaling, Notch-1 signaling, and apoptosis?. HJBC. 2022;50(4):367-75.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc