Research Article
BibTex RIS Cite

Green synthesis of silver nanoparticles using Salvia fruticosa Mill. extract and the effect of synthesis parameters on their formation, antioxidant, and electro-catalytic activity

Year 2022, Volume: 50 Issue: 4, 397 - 414, 09.10.2022
https://doi.org/10.15671/hjbc.1040656

Abstract

Among green synthesis methods, which are an eco-friendly, non-toxic, simple, and safe approach for the synthesis of silver nanoparticles (AgNPs), using plant extract is the most efficient method. Salvia fruticosa Mill. which was not used formerly was selected for this research. By changing the synthesis parameters (the amount of extract, extract concentration, and silver ion concentration in precursors), their effects on the formation and structure of nanoparticles were investigated by UV-visible spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy techniques. The antioxidant activity of extracts and AgNPs was evaluated by performing DPPH assay. It is observed that the phytosynthesized nanoparticles also possess antioxidant potentials. Finally, AgNPs were used as modifiers for carbon paste electrode (CPE) and their effect on charge transfer resistance and the ascorbic acid signal was investigated by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and square wave voltammetry (SWV). E1-1/CPE showed good electro-catalytic oxidation of ascorbic acid and can be utilized for the development of the new sensors. According to results, in the process of green synthesis of AgNPs, synthesis parameters are vital as they change not only the size and size distribution of the AgNPs but also their antioxidant activity and electrochemical properties.

Supporting Institution

Ankara University Scientific Research Projects Coordination Unit

Project Number

21L0430016

Thanks

Authors would like acknowledge the funding from Ankara University Scientific Research Projects Coordination Unit (21L0430016) for conducting this research.

References

  • 1. L. Hernández-Morales, H. Espinoza-Gómez, L.Z. Flores-López, E.L. Sotelo-Barrera, A. Núñez-Rivera et al., Study of the green synthesis of silver nanoparticles using a natural extract of dark or white Salvia hispanica L. seeds and their antibacterial application, Appl. Surf. Sci., 489 (2019) 952–961.
  • 2. S. Pirtarighat, M. Ghannadnia, S. Baghshahi, Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment, J. Nanostructure Chem., 9 (2019) 1–9.
  • 3. F. Nematollahi, Silver nanoparticles green synthesis using aqueous extract of Salvia limbata C.A. Mey, Int. J. Biosci., 6 (2015) 30–35.
  • 4. B. Ajitha, Y.A.K. Reddy, H.J. Jeon, C.W. Ahn, Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity, Adv. Powder Technol., 29 (2018) 86–93.
  • 5. D. Arumai Selvan, D. Mahendiran, R. Senthil Kumar, A. Kalilur Rahiman, Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies, J. Photochem. Photobiol. B Biol., 180 (2018) 243–252.
  • 6. A.U. Khan, Y. Wei, Z.U.H Khan, K. Tahir, S.U. Khan et al., Electrochemical and antioxidant properties of biogenic silver nanoparticles, Int. J. Electrochem. Sci., 10 (2015) 7905–7916.
  • 7. M. Baghayeri, B. Mahdavi, Z. Hosseinpor‐Mohsen Abadi, S. Farhadi, Green synthesis of silver nanoparticles using water extract of Salvia leriifolia : Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite, Appl. Organomet. Chem., 32 (2018) 1–9.
  • 8. M. Guo, W. Li, F. Yang, H. Liu, Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 142 (2015) 73–79.
  • 9. F.S. Şenol, I. Orhan, F. Celep, A. Kahraman, M. Doğan et al., Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities, Food Chem., 120 (2010) 34–43.
  • 10. N.H. El-Sayed, W. El-Eraky, M.T. Ibrahim, T.J. Mabry, Antiinflammatory and ulcerogenic activities of Salvia triloba extracts, Fitoterapia, 77 (2006) 333–335.
  • 11. A.P. Longaray Delamare, I.T. Moschen-Pistorello, L. Artico, L. Atti-Serafini, S. Echeverrigaray, Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil, Food Chem., 100 (2007) 603–608.
  • 12. G. Topçu, Bioactive Triterpenoids from Salvia Species, J. Nat. Prod., 69 (2006) 482–487.
  • 13. B. Tepe, M. Sokmen, H.A. Akpulat, A. Sokmen, Screening of the antioxidant potentials of six Salvia species from Turkey, Food Chem., 95 (2006) 200–204.
  • 14. C. Dincer, A. Topuz, H. Sahin-Nadeem, K.S. Ozdemir, I.B. Cam et al., A comparative study on phenolic composition, antioxidant activity and essential oil content of wild and cultivated sage (Salvia fruticosa Miller) as influenced by storage, Ind. Crops Prod., 39 (2012) 170–176.
  • 15. V. Papageorgiou, C. Gardeli, A. Mallouchos, M. Papaioannou, M. Komaitis, Variation of the chemical profile and antioxidant behavior of Rosmarinus officinalis L. and Salvia fruticosa Miller grown in Greece, J. Agric. Food Chem., 56 (2008) 7254–7264.
  • 16. M. Ijaz, M. Zafar, T. Iqbal, Green synthesis of silver nanoparticles by using various extracts: a review, Inorg. Nano-Metal Chem., 51 (2021) 744–755.
  • 17. C.M. Nicolescu, R.L. Olteanu, M. Bumbac, Growth Dynamics Study of Silver Nanoparticles Obtained by Green Synthesis using Salvia officinalis Extract, Anal. Lett., 50 (2017) 2802–2821.
  • 18. M.E. Taghavizadeh Yazdi, M. Modarres, M.S. Amiri, M. Darroudi, Phyto-synthesis of silver nanoparticles using aerial extract of Salvia leriifolia Benth and evaluation of their antibacterial and photo-catalytic properties, Res. Chem. Intermed., 45 (2019) 1105–1116.
  • 19. R.R.A.L. Prabha, AgNPs Synthesis, Characterization and Antibacterial Activity from Salvia splendens Sellow ex Roem. & Schult. Plant Extract, Int. J. Sci. Res., 4 (2015) 1086–1090.
  • 20. R.R.A.L. Prabha, Green Synthesis of AgNPs, Characterization and Antibacterial Activity from Salvia Leucantha Cav. Plant Aqueous Extract, Int. J. Sci. Res., 5 (2016) 1515–1519.
  • 21. J.L. Lopez-Miranda, M.A. Vázquez González, F. Mares-Briones, J.A. Cervantes-Chávez, R. Esparza, G. Rosas, R. Pérez, Catalytic and antibacterial evaluation of silver nanoparticles synthesized by a green approach. Res Chem Intermed 44 (2018) 7479–7490.
  • 22. S. Ghezi, B. Mahdavi, B. Maleki, Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Salvia Limbata, (2016).
  • 23. M.E. Barbinta-Patrascu, N. Badea, C. Ungureanu, D. Besliu, S. Antohe, Bioactive phyto-nanosilver particles ‘green’ synthesized from clary sage, burdock, southernwood and asparagus Rom. Reports Phys., 72 (2020).
  • 24. J.H. Lee, P. Velmurugan, J.H. Park, K. Murugan, N. Lovanh et al., A novel photo-biological engineering method for Salvia miltiorrhiza-mediated fabrication of silver nanoparticles using LED lights sources and its effectiveness against Aedes aegypti mosquito larvae and microbial pathogens, Physiol. Mol. Plant Pathol., 101 (2018) 178–186.
  • 25. W. Chartarrayawadee, P. Charoensin, J. Saenma, Rin T, Khamai P et al., “Green synthesis and stabilization of silver nanoparticles using Lysimachia foenum-graecum Hance extract and their antibacterial activity,” Green Process. Synth., 9 (2020) 107–118.
  • 26. V. Kumar, D.K. Singh, S. Mohan, S.H. Hasan, Photo-induced biosynthesis of silver nanoparticles using aqueous extract of Erigeron bonariensis and its catalytic activity against Acridine Orange, J. Photochem. Photobiol. B Biol., 155 (2016) 39–50.
  • 27. A.K. Mittal, A. Kaler, U.C. Banerjee, Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Flower Extract of Rhododendron dauricum,” Nano Biomed. Eng., 4 (2012) 118–124.
  • 28. I.R. Bunghez, M.E.B. Patrascu, N. Badea, S.M. Doncea, A. Popescu, R.M. Ion, Antioxidant silver nanoparticles green synthesized using ornamental plants, J. Optoelectron. Adv. Mater., 14 (2012) 1016–1022.
  • 29. S.N. Kharat, V.D. Mendhulkar, Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract, Mater. Sci. Eng. C, 62 (2016) 719–724.
  • 30. R.S. Priya, D. Geetha, P.S. Ramesh, Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs – A comparative study, Ecotoxicol. Environ. Saf., 134 (2016) 308–318.
  • 31. A. Akbal, M.H. Turkdemir, A. Cicek, B. Ulug, Relation between Silver Nanoparticle Formation Rate and Antioxidant Capacity of Aqueous Plant Leaf Extracts, J. Spectrosc., 2016 (2016) 1–6.
  • 32. P. Maisuthisakul, M. Suttajit, R. Pongsawatmanit, Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants, Food Chem., (2007).
  • 33. Z.C. Arıtuluk, I.I. Tatlı Çankaya, A.M. Gençler Özkan, Antioxidant activity, total phenolic and flavonoid contents of some Tanacetum L. (Asteraceae) taxa growing in Turkey, Fabad J. Pharm. Sci., 41 (2016) 17–25.
  • 34. S.L. Smitha, D. Philip, K.G. Gopchandran, Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 74 (2009) 735–739.
  • 35. C.R.B. Lopes, L.C. Courrol, Green synthesis of silver nanoparticles with extract of Mimusops coriacea and light, J. Lumin., 199 (2018) 183–187.
  • 36. Z. Bao, C.Q. Lan, Mechanism of light-dependent biosynthesis of silver nanoparticles mediated by cell extract of Neochloris oleoabundans, Colloids Surf B Biointerfaces, 170 (2018) 251–257.
  • 37. M. Ben Farhat, A. Landoulsi, R. Chaouch-Hamada, J.A. Sotomayor, M.J. Jordán, Characterization and quantification of phenolic compounds and antioxidant properties of Salvia species growing in different habitats, Ind. Crops Prod., 49 (2013) 904–914.
  • 38. M.S. Brewer, Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications, Compr. Rev. Food Sci. Food Saf., 10 (2011) 221–247.
  • 39. G. Agati, P. Matteini, A. Goti, M. Tattini, Chloroplast‐located flavonoids can scavenge singlet oxygen, New Phytol., 174 (2007) 77–89.
  • 40. A. Chahardoli, N. Karimi, A. Fattahi, Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy, Adv. Powder Technol., 29 (2018) 202–210.
  • 41. A. Chahardoli, F. Qalekhani, Y. Shokoohinia, A. Fattahi, Biological and Catalytic Activities of Green Synthesized Silver Nanoparticles from the Leaf Infusion of Dracocephalum kotschyi Boiss, Glob. Challenges, 5 (2021) 2000018.
  • 42. B.A. Chopade, R. Singh, P. Wagh, S. Gaidhani, A. Kumbhar et al., Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics, Int. J. Nanomedicine, 8 (2013) 4277.
  • 43. J.L. López-Miranda, J.A. Cervantes-Chávez, A.R. Hernández-Martínez, R. Pérez, R. Esparza, M. Estévez-González, Study on the photocatalytic and antibacterial properties of silver nanoparticles synthesized by a green approach, Mater. Res. Express, 6 (2019) 065066.
  • 44. S.A. Cherrak, N. Mokhtari-Soulimane, F. Berroukeche, B. Bensenane, A. Cherbonnel et al., In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation, PLoS One, 11 (2016) e0165575.
  • 45. M. Muti, A. Erdem, A. Caliskan, A. Sınag, T. Yumak, Electrochemical behaviour of carbon paste electrodes enriched with tin oxide nanoparticles using voltammetry and electrochemical impedance spectroscopy, Colloids Surfaces B Biointerfaces, 86 (2011) 154–157.
  • 46. S. Ortaboy, Electrochemistry and sensitive determination of a metal complex azo dye using graphite paste electrode modified with Na-bentonite, J. Turkish Chem. Soc. Sect. A Chem., 4 (2017) 931–952.
Year 2022, Volume: 50 Issue: 4, 397 - 414, 09.10.2022
https://doi.org/10.15671/hjbc.1040656

Abstract

Project Number

21L0430016

References

  • 1. L. Hernández-Morales, H. Espinoza-Gómez, L.Z. Flores-López, E.L. Sotelo-Barrera, A. Núñez-Rivera et al., Study of the green synthesis of silver nanoparticles using a natural extract of dark or white Salvia hispanica L. seeds and their antibacterial application, Appl. Surf. Sci., 489 (2019) 952–961.
  • 2. S. Pirtarighat, M. Ghannadnia, S. Baghshahi, Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment, J. Nanostructure Chem., 9 (2019) 1–9.
  • 3. F. Nematollahi, Silver nanoparticles green synthesis using aqueous extract of Salvia limbata C.A. Mey, Int. J. Biosci., 6 (2015) 30–35.
  • 4. B. Ajitha, Y.A.K. Reddy, H.J. Jeon, C.W. Ahn, Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity, Adv. Powder Technol., 29 (2018) 86–93.
  • 5. D. Arumai Selvan, D. Mahendiran, R. Senthil Kumar, A. Kalilur Rahiman, Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies, J. Photochem. Photobiol. B Biol., 180 (2018) 243–252.
  • 6. A.U. Khan, Y. Wei, Z.U.H Khan, K. Tahir, S.U. Khan et al., Electrochemical and antioxidant properties of biogenic silver nanoparticles, Int. J. Electrochem. Sci., 10 (2015) 7905–7916.
  • 7. M. Baghayeri, B. Mahdavi, Z. Hosseinpor‐Mohsen Abadi, S. Farhadi, Green synthesis of silver nanoparticles using water extract of Salvia leriifolia : Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite, Appl. Organomet. Chem., 32 (2018) 1–9.
  • 8. M. Guo, W. Li, F. Yang, H. Liu, Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 142 (2015) 73–79.
  • 9. F.S. Şenol, I. Orhan, F. Celep, A. Kahraman, M. Doğan et al., Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities, Food Chem., 120 (2010) 34–43.
  • 10. N.H. El-Sayed, W. El-Eraky, M.T. Ibrahim, T.J. Mabry, Antiinflammatory and ulcerogenic activities of Salvia triloba extracts, Fitoterapia, 77 (2006) 333–335.
  • 11. A.P. Longaray Delamare, I.T. Moschen-Pistorello, L. Artico, L. Atti-Serafini, S. Echeverrigaray, Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil, Food Chem., 100 (2007) 603–608.
  • 12. G. Topçu, Bioactive Triterpenoids from Salvia Species, J. Nat. Prod., 69 (2006) 482–487.
  • 13. B. Tepe, M. Sokmen, H.A. Akpulat, A. Sokmen, Screening of the antioxidant potentials of six Salvia species from Turkey, Food Chem., 95 (2006) 200–204.
  • 14. C. Dincer, A. Topuz, H. Sahin-Nadeem, K.S. Ozdemir, I.B. Cam et al., A comparative study on phenolic composition, antioxidant activity and essential oil content of wild and cultivated sage (Salvia fruticosa Miller) as influenced by storage, Ind. Crops Prod., 39 (2012) 170–176.
  • 15. V. Papageorgiou, C. Gardeli, A. Mallouchos, M. Papaioannou, M. Komaitis, Variation of the chemical profile and antioxidant behavior of Rosmarinus officinalis L. and Salvia fruticosa Miller grown in Greece, J. Agric. Food Chem., 56 (2008) 7254–7264.
  • 16. M. Ijaz, M. Zafar, T. Iqbal, Green synthesis of silver nanoparticles by using various extracts: a review, Inorg. Nano-Metal Chem., 51 (2021) 744–755.
  • 17. C.M. Nicolescu, R.L. Olteanu, M. Bumbac, Growth Dynamics Study of Silver Nanoparticles Obtained by Green Synthesis using Salvia officinalis Extract, Anal. Lett., 50 (2017) 2802–2821.
  • 18. M.E. Taghavizadeh Yazdi, M. Modarres, M.S. Amiri, M. Darroudi, Phyto-synthesis of silver nanoparticles using aerial extract of Salvia leriifolia Benth and evaluation of their antibacterial and photo-catalytic properties, Res. Chem. Intermed., 45 (2019) 1105–1116.
  • 19. R.R.A.L. Prabha, AgNPs Synthesis, Characterization and Antibacterial Activity from Salvia splendens Sellow ex Roem. & Schult. Plant Extract, Int. J. Sci. Res., 4 (2015) 1086–1090.
  • 20. R.R.A.L. Prabha, Green Synthesis of AgNPs, Characterization and Antibacterial Activity from Salvia Leucantha Cav. Plant Aqueous Extract, Int. J. Sci. Res., 5 (2016) 1515–1519.
  • 21. J.L. Lopez-Miranda, M.A. Vázquez González, F. Mares-Briones, J.A. Cervantes-Chávez, R. Esparza, G. Rosas, R. Pérez, Catalytic and antibacterial evaluation of silver nanoparticles synthesized by a green approach. Res Chem Intermed 44 (2018) 7479–7490.
  • 22. S. Ghezi, B. Mahdavi, B. Maleki, Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Salvia Limbata, (2016).
  • 23. M.E. Barbinta-Patrascu, N. Badea, C. Ungureanu, D. Besliu, S. Antohe, Bioactive phyto-nanosilver particles ‘green’ synthesized from clary sage, burdock, southernwood and asparagus Rom. Reports Phys., 72 (2020).
  • 24. J.H. Lee, P. Velmurugan, J.H. Park, K. Murugan, N. Lovanh et al., A novel photo-biological engineering method for Salvia miltiorrhiza-mediated fabrication of silver nanoparticles using LED lights sources and its effectiveness against Aedes aegypti mosquito larvae and microbial pathogens, Physiol. Mol. Plant Pathol., 101 (2018) 178–186.
  • 25. W. Chartarrayawadee, P. Charoensin, J. Saenma, Rin T, Khamai P et al., “Green synthesis and stabilization of silver nanoparticles using Lysimachia foenum-graecum Hance extract and their antibacterial activity,” Green Process. Synth., 9 (2020) 107–118.
  • 26. V. Kumar, D.K. Singh, S. Mohan, S.H. Hasan, Photo-induced biosynthesis of silver nanoparticles using aqueous extract of Erigeron bonariensis and its catalytic activity against Acridine Orange, J. Photochem. Photobiol. B Biol., 155 (2016) 39–50.
  • 27. A.K. Mittal, A. Kaler, U.C. Banerjee, Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Flower Extract of Rhododendron dauricum,” Nano Biomed. Eng., 4 (2012) 118–124.
  • 28. I.R. Bunghez, M.E.B. Patrascu, N. Badea, S.M. Doncea, A. Popescu, R.M. Ion, Antioxidant silver nanoparticles green synthesized using ornamental plants, J. Optoelectron. Adv. Mater., 14 (2012) 1016–1022.
  • 29. S.N. Kharat, V.D. Mendhulkar, Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract, Mater. Sci. Eng. C, 62 (2016) 719–724.
  • 30. R.S. Priya, D. Geetha, P.S. Ramesh, Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs – A comparative study, Ecotoxicol. Environ. Saf., 134 (2016) 308–318.
  • 31. A. Akbal, M.H. Turkdemir, A. Cicek, B. Ulug, Relation between Silver Nanoparticle Formation Rate and Antioxidant Capacity of Aqueous Plant Leaf Extracts, J. Spectrosc., 2016 (2016) 1–6.
  • 32. P. Maisuthisakul, M. Suttajit, R. Pongsawatmanit, Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants, Food Chem., (2007).
  • 33. Z.C. Arıtuluk, I.I. Tatlı Çankaya, A.M. Gençler Özkan, Antioxidant activity, total phenolic and flavonoid contents of some Tanacetum L. (Asteraceae) taxa growing in Turkey, Fabad J. Pharm. Sci., 41 (2016) 17–25.
  • 34. S.L. Smitha, D. Philip, K.G. Gopchandran, Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 74 (2009) 735–739.
  • 35. C.R.B. Lopes, L.C. Courrol, Green synthesis of silver nanoparticles with extract of Mimusops coriacea and light, J. Lumin., 199 (2018) 183–187.
  • 36. Z. Bao, C.Q. Lan, Mechanism of light-dependent biosynthesis of silver nanoparticles mediated by cell extract of Neochloris oleoabundans, Colloids Surf B Biointerfaces, 170 (2018) 251–257.
  • 37. M. Ben Farhat, A. Landoulsi, R. Chaouch-Hamada, J.A. Sotomayor, M.J. Jordán, Characterization and quantification of phenolic compounds and antioxidant properties of Salvia species growing in different habitats, Ind. Crops Prod., 49 (2013) 904–914.
  • 38. M.S. Brewer, Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications, Compr. Rev. Food Sci. Food Saf., 10 (2011) 221–247.
  • 39. G. Agati, P. Matteini, A. Goti, M. Tattini, Chloroplast‐located flavonoids can scavenge singlet oxygen, New Phytol., 174 (2007) 77–89.
  • 40. A. Chahardoli, N. Karimi, A. Fattahi, Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy, Adv. Powder Technol., 29 (2018) 202–210.
  • 41. A. Chahardoli, F. Qalekhani, Y. Shokoohinia, A. Fattahi, Biological and Catalytic Activities of Green Synthesized Silver Nanoparticles from the Leaf Infusion of Dracocephalum kotschyi Boiss, Glob. Challenges, 5 (2021) 2000018.
  • 42. B.A. Chopade, R. Singh, P. Wagh, S. Gaidhani, A. Kumbhar et al., Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics, Int. J. Nanomedicine, 8 (2013) 4277.
  • 43. J.L. López-Miranda, J.A. Cervantes-Chávez, A.R. Hernández-Martínez, R. Pérez, R. Esparza, M. Estévez-González, Study on the photocatalytic and antibacterial properties of silver nanoparticles synthesized by a green approach, Mater. Res. Express, 6 (2019) 065066.
  • 44. S.A. Cherrak, N. Mokhtari-Soulimane, F. Berroukeche, B. Bensenane, A. Cherbonnel et al., In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation, PLoS One, 11 (2016) e0165575.
  • 45. M. Muti, A. Erdem, A. Caliskan, A. Sınag, T. Yumak, Electrochemical behaviour of carbon paste electrodes enriched with tin oxide nanoparticles using voltammetry and electrochemical impedance spectroscopy, Colloids Surfaces B Biointerfaces, 86 (2011) 154–157.
  • 46. S. Ortaboy, Electrochemistry and sensitive determination of a metal complex azo dye using graphite paste electrode modified with Na-bentonite, J. Turkish Chem. Soc. Sect. A Chem., 4 (2017) 931–952.
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Damla Erkakan 0000-0003-3168-9851

Neziha Yağmur Diker 0000-0002-3285-8162

Müşerref Önal 0000-0002-1540-8389

İffet İrem Çankaya 0000-0001-8531-9130

Project Number 21L0430016
Publication Date October 9, 2022
Acceptance Date April 7, 2022
Published in Issue Year 2022 Volume: 50 Issue: 4

Cite

APA Erkakan, D., Diker, N. Y., Önal, M., Çankaya, İ. İ. (2022). Green synthesis of silver nanoparticles using Salvia fruticosa Mill. extract and the effect of synthesis parameters on their formation, antioxidant, and electro-catalytic activity. Hacettepe Journal of Biology and Chemistry, 50(4), 397-414. https://doi.org/10.15671/hjbc.1040656
AMA Erkakan D, Diker NY, Önal M, Çankaya İİ. Green synthesis of silver nanoparticles using Salvia fruticosa Mill. extract and the effect of synthesis parameters on their formation, antioxidant, and electro-catalytic activity. HJBC. October 2022;50(4):397-414. doi:10.15671/hjbc.1040656
Chicago Erkakan, Damla, Neziha Yağmur Diker, Müşerref Önal, and İffet İrem Çankaya. “Green Synthesis of Silver Nanoparticles Using Salvia Fruticosa Mill. Extract and the Effect of Synthesis Parameters on Their Formation, Antioxidant, and Electro-Catalytic Activity”. Hacettepe Journal of Biology and Chemistry 50, no. 4 (October 2022): 397-414. https://doi.org/10.15671/hjbc.1040656.
EndNote Erkakan D, Diker NY, Önal M, Çankaya İİ (October 1, 2022) Green synthesis of silver nanoparticles using Salvia fruticosa Mill. extract and the effect of synthesis parameters on their formation, antioxidant, and electro-catalytic activity. Hacettepe Journal of Biology and Chemistry 50 4 397–414.
IEEE D. Erkakan, N. Y. Diker, M. Önal, and İ. İ. Çankaya, “Green synthesis of silver nanoparticles using Salvia fruticosa Mill. extract and the effect of synthesis parameters on their formation, antioxidant, and electro-catalytic activity”, HJBC, vol. 50, no. 4, pp. 397–414, 2022, doi: 10.15671/hjbc.1040656.
ISNAD Erkakan, Damla et al. “Green Synthesis of Silver Nanoparticles Using Salvia Fruticosa Mill. Extract and the Effect of Synthesis Parameters on Their Formation, Antioxidant, and Electro-Catalytic Activity”. Hacettepe Journal of Biology and Chemistry 50/4 (October 2022), 397-414. https://doi.org/10.15671/hjbc.1040656.
JAMA Erkakan D, Diker NY, Önal M, Çankaya İİ. Green synthesis of silver nanoparticles using Salvia fruticosa Mill. extract and the effect of synthesis parameters on their formation, antioxidant, and electro-catalytic activity. HJBC. 2022;50:397–414.
MLA Erkakan, Damla et al. “Green Synthesis of Silver Nanoparticles Using Salvia Fruticosa Mill. Extract and the Effect of Synthesis Parameters on Their Formation, Antioxidant, and Electro-Catalytic Activity”. Hacettepe Journal of Biology and Chemistry, vol. 50, no. 4, 2022, pp. 397-14, doi:10.15671/hjbc.1040656.
Vancouver Erkakan D, Diker NY, Önal M, Çankaya İİ. Green synthesis of silver nanoparticles using Salvia fruticosa Mill. extract and the effect of synthesis parameters on their formation, antioxidant, and electro-catalytic activity. HJBC. 2022;50(4):397-414.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc