Research Article
BibTex RIS Cite
Year 2023, Volume: 51 Issue: 3, 297 - 307, 16.07.2023
https://doi.org/10.15671/hjbc.1272350

Abstract

Project Number

FBA2017-12854

References

  • M.A. Avery, C.S. Mizuno, A.G. Chittiboyina, T.W.Kurtz, H.A. Pershadsingh, Type 2 diabetes and oral antihyperglycemic drugs. Curr. Med. Chem. 15 (2008) 61-74.
  • R.J. Marles, N. Farnsworth, Antidiabetic plants and their active constituents: An update, Prof. J. Bot. Med. 3 (1996) 85-135.
  • L-W. Qi, E-H. Liu, C. Chu, Y-B. Peng, H.X. Cai, P. Li, Anti-diabetic agents from natural products- An update from 2004 to 2009. Curr. Top. Med. Chem. 10 (2010) 434-457.
  • B. Ramesh, K.V. Pugalendi, Antihyperglycemic effect of umbelliferone in streptozotocin-diabetic rats, J. Med. Food 9 (2006) 562-566.
  • B. Ramesh, K.V. Pugalendi, Antioxidant role of umbelliferone in STZ-diabetic rats. Life Scie. 79 (2006) 306-310.
  • E. Gökoğlu, Investigation of binding properties of umbelliferone (7hydroxycoumarin) to lysozyme. J. Fluoresc. 23 (2013) 333-338.
  • D.P. Yeggoni, M. Gokara, D.M. Manidhar, A. Rachamallu, S. Nakka, C.S. Reddy, R. Subramanyam, Binding and molecular dynamics studies of 7-hydroxycoumarin derivatives with human serum albumin and its pharmacological importance. Mol. Pharm. 11 (2014) 1117-1131.
  • C.S. Lino, M.L. Taveira, G.S.B. Viana, F.J.A. Matos, Analgesic and antiinflammatory activities of Justicia pectoralis Jacq and its main constituents: Coumarin and umbelliferone, Phytother. Res. 11 (1997) 211-215.
  • K.N. Venugopala, V. Rashmi, B. Odhav, Review on natural coumarin compunds for their pharmacological activity. BioMed Res. Int. 2013 (2013) 1-14.
  • T. Sarwar, S.U. Rehman, M.A. Husain, H.M. Ishqi, M. Tabish, Interaction of coumarin with calf thymus DNA: Deciphering the mode of binding by in vitro studies, Int. J. Biol. Macromol. 73 (2015) 9-16.
  • Z. Yong, D. Yingjie, L. Ming, D.Q.M. Craig, L. Zhengqiang, A spectroscopic investigation into the interaction between bile salts and insülin in alkaline aqueous solution, J. Colloid Interface Sci. 337 (2009) 322-331.
  • D. Jacob, M.J. Taylor, P. Tomlins, T.S. Sahota, Synthesis and identification of FITC-insulin conjugates produced using human insulin and insulin analogues for biomedical applications. J. Fluoresc. 26 (2016) 617-629.
  • I.B. Bekard, D.E. Dunstan, Tyrosine autofluorescence as a measure of bovine insulin fibrillation, Biophys. J. 97 (2009) 2521-2531.
  • G. Hosseinzadeh, A. Maghari, A.A. Saboury, A.A. Moosavi-Movahedi, Unfolding of insulin at the surface of ZnO quantum dots, Int. J. Biol. Macromol. 86 (2016) 169-176.
  • J.R. Lakowicz, Principles of Fluorescence Spectroscopy (2006) New York:Plenum.
  • Dassault Systemes Biovia, Discovery Studio Modeling Environment Release 2017, Dassault Systemes, San Diego, 2016.
  • B.R. Brooks.; R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem. 4 (1983) 187-217.
  • C.G. Frankaer, S. Mossin, K. Stahl, P. Harris, Towards accurate structural characterization of metal centres in protein crystals: the structures of Ni and Cu T6 bovine insulin derivatives, Acta Crystallogr. D 70 (2014) 110-122.
  • Gaussian 09, Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J. E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V. G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, (2009) Gaussian, Inc., Wallingford CT.
  • O. Nowacka, K. Milowska, M. Bryszewska, Interaction of PAMAM dendrimers with bovine insulin depends on nanoparticle end-groups, J. Lumin. 162 (2015) 87-91.
  • M. Falconi, M. Bozzi, M. Paci, A. Raudino, R. Purrello, A. Cambria, M. Sette, M.T. Cambria, Spectroscopic and molecular dynamics simulation studies of the interaction of insulin with glucose, Int. J. Biol. Macromol. 29 (2001) 161-168.
  • H. Lin, R. Chen, X. Liu, F. Sheng, H. Zhang, Study on interaction of mangiferin to insülin and glucagon in ternary system, Spectrochim. Acta Part A, 75 (2010) 1584-1591.
  • W.M. Vaughan, G. Weber, Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. Biochemistry 9 (1970) 464-473.
  • M. Toprak, B.M. Aydın, M. Arık, Y. Onganer, Fluorescence quenching of fluorescein by merocyanine 540 in liposomes, J. Lumin. 131 (2011) 2286-2289.
  • B. Bakaeean, M. Kabiri, H. Iranfar, M.R. Saberi, J. Chamani, Binding effect of common ions to human serum albumin in the presence of norfloxacin: Investigation with spectroscopic and zeta potential approaches, J. Solut. Chem. 41 (2012) 1777-1801.
  • N. Shahabadi, A. Khorshidi, M. Mohammadpour, Investigation of the effects of Zn2+, Ca2+ and Na+ ions on the interaction between zonisamide and human serum albumin (HSA) by spectroscopic methods, Spectrochim. Acta Part A, 122 (2014) 48-54.
  • I. Saha, J. Bhattacharyya, G.S. Kumar, Thermodynamic investigations of ligand-protein interactions: Binding of the phenazinium dyes phenosafranin and safranin O with human serum albumin, J. Chem. Thermodynamics 56 (2013) 114-122.
  • P.D. Ross, S. Subramanian, Thermodynamics of protein association reactions: Forces contributing to stability, Biochemistry, 20 (1981) 3096-102.
  • A. Verdian-Doghaei, M.R. Housaindokht, Spectroscopic study of the interaction of insülin and its aptamer-sensitive optical detection of insulin, J. Lumin. 159 (2015) 1-8.
  • J. Han, H.Y. Zou, M.X. Gao, C.Z. Huang, A graphitic carbon nitride based fluorescence resonance energy transfer detection of riboflavin, Talanta 148 (2016) 279-284.
  • C-C. Chiou, S-W. Chen, J-D. Luo; Y-T. Chien, Monitoring triplex DNA formation with fluorescence resonance energy transfer between a fluorophore-labeled probe and intercalating dyes, Anal. Biochem. 416 (2011) 1-7.
  • A. Sarkar, S.C. Bhattacharya, Selective fluorescence resonance energy transfer from serum albumins to a bio-active 3-pyrazolyl-2-pyrazoline derivative: A spectroscopic analysis. J. Lumin. 132 (2012) 2612-2618.
  • N. Shahabadi, A. Khorshidi, N.H. Moghadam, Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Spectrochim. Acta Part A 114 (2013) 627-632.
  • C. Zhu, H. Zheng, D. Li, S. Li, J. Xu, Fluorescence quenching method for the determination of sodium dodecyl sulphate with near-infrared hydrophobic dye in the presence of Triton X-100. Spectrochim. Acta Part A 60 (2004) 3173-3179.

Investigation on the Binding properties of a Coumarin Derivative to Insulin by Spectroscopic and Computational Approaches

Year 2023, Volume: 51 Issue: 3, 297 - 307, 16.07.2023
https://doi.org/10.15671/hjbc.1272350

Abstract

The binding properties of insulin hormone to the potential antidiabetic coumarin derivative umbelliferone (7hydroxycoumarin, 7HC) was investigated by absorption, fluorescence quenching and molecular docking methods. The negative signs of thermodynamic parameters (H and S) indicated that hydrogen bonds and van der Waals forces were dominant in the binding mode. The effect of common metal ions was investigated on binding parameters. According to the Förster’s theory; binding distance, r was obtained as 4.17 nm. The spectral data further supported by molecular docking calculations which show hydrogen bonds between 7HC and insulin.

Supporting Institution

Hacettepe University Scientific Research Fund

Project Number

FBA2017-12854

References

  • M.A. Avery, C.S. Mizuno, A.G. Chittiboyina, T.W.Kurtz, H.A. Pershadsingh, Type 2 diabetes and oral antihyperglycemic drugs. Curr. Med. Chem. 15 (2008) 61-74.
  • R.J. Marles, N. Farnsworth, Antidiabetic plants and their active constituents: An update, Prof. J. Bot. Med. 3 (1996) 85-135.
  • L-W. Qi, E-H. Liu, C. Chu, Y-B. Peng, H.X. Cai, P. Li, Anti-diabetic agents from natural products- An update from 2004 to 2009. Curr. Top. Med. Chem. 10 (2010) 434-457.
  • B. Ramesh, K.V. Pugalendi, Antihyperglycemic effect of umbelliferone in streptozotocin-diabetic rats, J. Med. Food 9 (2006) 562-566.
  • B. Ramesh, K.V. Pugalendi, Antioxidant role of umbelliferone in STZ-diabetic rats. Life Scie. 79 (2006) 306-310.
  • E. Gökoğlu, Investigation of binding properties of umbelliferone (7hydroxycoumarin) to lysozyme. J. Fluoresc. 23 (2013) 333-338.
  • D.P. Yeggoni, M. Gokara, D.M. Manidhar, A. Rachamallu, S. Nakka, C.S. Reddy, R. Subramanyam, Binding and molecular dynamics studies of 7-hydroxycoumarin derivatives with human serum albumin and its pharmacological importance. Mol. Pharm. 11 (2014) 1117-1131.
  • C.S. Lino, M.L. Taveira, G.S.B. Viana, F.J.A. Matos, Analgesic and antiinflammatory activities of Justicia pectoralis Jacq and its main constituents: Coumarin and umbelliferone, Phytother. Res. 11 (1997) 211-215.
  • K.N. Venugopala, V. Rashmi, B. Odhav, Review on natural coumarin compunds for their pharmacological activity. BioMed Res. Int. 2013 (2013) 1-14.
  • T. Sarwar, S.U. Rehman, M.A. Husain, H.M. Ishqi, M. Tabish, Interaction of coumarin with calf thymus DNA: Deciphering the mode of binding by in vitro studies, Int. J. Biol. Macromol. 73 (2015) 9-16.
  • Z. Yong, D. Yingjie, L. Ming, D.Q.M. Craig, L. Zhengqiang, A spectroscopic investigation into the interaction between bile salts and insülin in alkaline aqueous solution, J. Colloid Interface Sci. 337 (2009) 322-331.
  • D. Jacob, M.J. Taylor, P. Tomlins, T.S. Sahota, Synthesis and identification of FITC-insulin conjugates produced using human insulin and insulin analogues for biomedical applications. J. Fluoresc. 26 (2016) 617-629.
  • I.B. Bekard, D.E. Dunstan, Tyrosine autofluorescence as a measure of bovine insulin fibrillation, Biophys. J. 97 (2009) 2521-2531.
  • G. Hosseinzadeh, A. Maghari, A.A. Saboury, A.A. Moosavi-Movahedi, Unfolding of insulin at the surface of ZnO quantum dots, Int. J. Biol. Macromol. 86 (2016) 169-176.
  • J.R. Lakowicz, Principles of Fluorescence Spectroscopy (2006) New York:Plenum.
  • Dassault Systemes Biovia, Discovery Studio Modeling Environment Release 2017, Dassault Systemes, San Diego, 2016.
  • B.R. Brooks.; R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem. 4 (1983) 187-217.
  • C.G. Frankaer, S. Mossin, K. Stahl, P. Harris, Towards accurate structural characterization of metal centres in protein crystals: the structures of Ni and Cu T6 bovine insulin derivatives, Acta Crystallogr. D 70 (2014) 110-122.
  • Gaussian 09, Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J. E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V. G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, (2009) Gaussian, Inc., Wallingford CT.
  • O. Nowacka, K. Milowska, M. Bryszewska, Interaction of PAMAM dendrimers with bovine insulin depends on nanoparticle end-groups, J. Lumin. 162 (2015) 87-91.
  • M. Falconi, M. Bozzi, M. Paci, A. Raudino, R. Purrello, A. Cambria, M. Sette, M.T. Cambria, Spectroscopic and molecular dynamics simulation studies of the interaction of insulin with glucose, Int. J. Biol. Macromol. 29 (2001) 161-168.
  • H. Lin, R. Chen, X. Liu, F. Sheng, H. Zhang, Study on interaction of mangiferin to insülin and glucagon in ternary system, Spectrochim. Acta Part A, 75 (2010) 1584-1591.
  • W.M. Vaughan, G. Weber, Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. Biochemistry 9 (1970) 464-473.
  • M. Toprak, B.M. Aydın, M. Arık, Y. Onganer, Fluorescence quenching of fluorescein by merocyanine 540 in liposomes, J. Lumin. 131 (2011) 2286-2289.
  • B. Bakaeean, M. Kabiri, H. Iranfar, M.R. Saberi, J. Chamani, Binding effect of common ions to human serum albumin in the presence of norfloxacin: Investigation with spectroscopic and zeta potential approaches, J. Solut. Chem. 41 (2012) 1777-1801.
  • N. Shahabadi, A. Khorshidi, M. Mohammadpour, Investigation of the effects of Zn2+, Ca2+ and Na+ ions on the interaction between zonisamide and human serum albumin (HSA) by spectroscopic methods, Spectrochim. Acta Part A, 122 (2014) 48-54.
  • I. Saha, J. Bhattacharyya, G.S. Kumar, Thermodynamic investigations of ligand-protein interactions: Binding of the phenazinium dyes phenosafranin and safranin O with human serum albumin, J. Chem. Thermodynamics 56 (2013) 114-122.
  • P.D. Ross, S. Subramanian, Thermodynamics of protein association reactions: Forces contributing to stability, Biochemistry, 20 (1981) 3096-102.
  • A. Verdian-Doghaei, M.R. Housaindokht, Spectroscopic study of the interaction of insülin and its aptamer-sensitive optical detection of insulin, J. Lumin. 159 (2015) 1-8.
  • J. Han, H.Y. Zou, M.X. Gao, C.Z. Huang, A graphitic carbon nitride based fluorescence resonance energy transfer detection of riboflavin, Talanta 148 (2016) 279-284.
  • C-C. Chiou, S-W. Chen, J-D. Luo; Y-T. Chien, Monitoring triplex DNA formation with fluorescence resonance energy transfer between a fluorophore-labeled probe and intercalating dyes, Anal. Biochem. 416 (2011) 1-7.
  • A. Sarkar, S.C. Bhattacharya, Selective fluorescence resonance energy transfer from serum albumins to a bio-active 3-pyrazolyl-2-pyrazoline derivative: A spectroscopic analysis. J. Lumin. 132 (2012) 2612-2618.
  • N. Shahabadi, A. Khorshidi, N.H. Moghadam, Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Spectrochim. Acta Part A 114 (2013) 627-632.
  • C. Zhu, H. Zheng, D. Li, S. Li, J. Xu, Fluorescence quenching method for the determination of sodium dodecyl sulphate with near-infrared hydrophobic dye in the presence of Triton X-100. Spectrochim. Acta Part A 60 (2004) 3173-3179.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Elmas Gökoğlu 0000-0002-1076-7702

Buse Aklar 0000-0002-9926-6380

Tugba Taskın Tok 0000-0002-0064-8400

Project Number FBA2017-12854
Early Pub Date July 14, 2023
Publication Date July 16, 2023
Acceptance Date June 8, 2023
Published in Issue Year 2023 Volume: 51 Issue: 3

Cite

APA Gökoğlu, E., Aklar, B., & Taskın Tok, T. (2023). Investigation on the Binding properties of a Coumarin Derivative to Insulin by Spectroscopic and Computational Approaches. Hacettepe Journal of Biology and Chemistry, 51(3), 297-307. https://doi.org/10.15671/hjbc.1272350
AMA Gökoğlu E, Aklar B, Taskın Tok T. Investigation on the Binding properties of a Coumarin Derivative to Insulin by Spectroscopic and Computational Approaches. HJBC. July 2023;51(3):297-307. doi:10.15671/hjbc.1272350
Chicago Gökoğlu, Elmas, Buse Aklar, and Tugba Taskın Tok. “Investigation on the Binding Properties of a Coumarin Derivative to Insulin by Spectroscopic and Computational Approaches”. Hacettepe Journal of Biology and Chemistry 51, no. 3 (July 2023): 297-307. https://doi.org/10.15671/hjbc.1272350.
EndNote Gökoğlu E, Aklar B, Taskın Tok T (July 1, 2023) Investigation on the Binding properties of a Coumarin Derivative to Insulin by Spectroscopic and Computational Approaches. Hacettepe Journal of Biology and Chemistry 51 3 297–307.
IEEE E. Gökoğlu, B. Aklar, and T. Taskın Tok, “Investigation on the Binding properties of a Coumarin Derivative to Insulin by Spectroscopic and Computational Approaches”, HJBC, vol. 51, no. 3, pp. 297–307, 2023, doi: 10.15671/hjbc.1272350.
ISNAD Gökoğlu, Elmas et al. “Investigation on the Binding Properties of a Coumarin Derivative to Insulin by Spectroscopic and Computational Approaches”. Hacettepe Journal of Biology and Chemistry 51/3 (July 2023), 297-307. https://doi.org/10.15671/hjbc.1272350.
JAMA Gökoğlu E, Aklar B, Taskın Tok T. Investigation on the Binding properties of a Coumarin Derivative to Insulin by Spectroscopic and Computational Approaches. HJBC. 2023;51:297–307.
MLA Gökoğlu, Elmas et al. “Investigation on the Binding Properties of a Coumarin Derivative to Insulin by Spectroscopic and Computational Approaches”. Hacettepe Journal of Biology and Chemistry, vol. 51, no. 3, 2023, pp. 297-0, doi:10.15671/hjbc.1272350.
Vancouver Gökoğlu E, Aklar B, Taskın Tok T. Investigation on the Binding properties of a Coumarin Derivative to Insulin by Spectroscopic and Computational Approaches. HJBC. 2023;51(3):297-30.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc