Dissertation
BibTex RIS Cite

TENOFOVIR DISOPROXIL FUMARATE RELEASE FROM GLUTARALDEHYDE CROSS-LINKED CHITOSAN/Β-CYCLODEXTRIN HYDROGEL

Year 2024, Volume: 52 Issue: 2, 97 - 115, 01.04.2024
https://doi.org/10.15671/hjbc.1335348

Abstract

In this study, chitosan was produced from crayfish Astacus leptodactylus, and then it was used to synthesize chitosan-graft-β-cyclodextrin (CS-g-β-CD) hydrogel. The produced chitosan (CS) and the sythesized CS-g-β-CD hydrogel were characterized using a Fourier Transform Infrared Spectroscopy (FTIR), Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). Tenofovir disoproxil fumarate (TDF) was used as a model to investigate the antiviral drug release properties of the CS-g-β-CD hydrogel. The synthesized hydrogel had an almost homogeneous pore structure and a high swelling capacity which increases depending on the amount of β-Cyclodextrin (β-CD). The drug-loaded CS-g-β-CD hydrogels was examined by XRD and 1H-NMR, and SEM analyses. Seventy-three percent of the TDF loaded on the synthesized hydrogels was released into phosphate-buffered saline (PBS) solution at 37 ºC. The drug release behavior of all prepared CS-g-β-CD hydrogels fitted the Korsmeyer-Peppas model. The addition of β-CD into the gel improved the swelling ability and TDF release of the CS-g-β-CD hydrogel system.

Supporting Institution

Trakya University Scientific Research Projects Unit

Project Number

TUBAP 2020/149

Thanks

The authors thank Nobel İlaç San. ve Tic. A.Ş. (Turkey) for their contribution to supply the active substance Tenofovir disoproxil fumarate.

References

  • WHO, 2021a. “World Health Organisation, Coronavirus (COVID-19)”, https://covid19.who.int/ (Erişim tarihi: 29.10.2021)
  • K. Kurt, L. Dönbak, A. Kayraldız, Tenofovir Disoproxil Fumarate in the Treatment of AIDS, Archives Medical Review Journal, 24 (2015) 119-134.
  • WHO, 2021b. “World Health Organisation, Hepatitis B”, https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (Erişim tarihi: 29.10.2021)
  • UNAIDS, 2021. “The Joint United Nations Programme on HIV/AIDS, Global HIV & AIDS statistics-Fact sheet”, https://www.unaids.org/en/resources/fact-sheet (Erişim tarihi: 02.12.2021)
  • D. Yu, J. Heathcote, Tenofovir in the treatment of chronic hepatitis B, Therapy, 8 (2011) 527-544.
  • J.E. Gallant, S. Deresinski, Tenofovir disoproxil fumarate, Clin. Infect. Dis., 37 (2003) 944-950.
  • S.M. Ecin, N. Çalık Başaran, M. Aladağ, Evaluation of the Effectiveness of Tenofovir in Chronic Hepatitis B Patients, Acta Medica, 51 (2020) 9-14.
  • J. Li, D.H. Zhang, X.X. Zhang, The Occurrence of rtA194T Mutant After Long-Term Lamivudine Monotherapy Remains Sensitive to Tenofovir Disoproxil Fumarate: A Case Report, Infect. Drug Resist., 14 (2021) 1013-1017.
  • S. Selvaraj, V. Niraimathi, M. Nappinnai, Formulation and evaluation of acyclovir loaded chitosan nanoparticles, Int. J. Pharm. Anal. Res., 5 (2016) 619-629.
  • M.M. Al-Tabakha, S.A. Khan, A. Ashames, H. Ullah, K. Ullah, G. Murtaza, N. Hassan, Synthesis, Characterization and Safety Evaluation of Sericin-Based Hydrogels for Controlled Delivery of Acyclovir, Pharmaceuticals, 14 (2021) 234.
  • N.S. Malik, M. Ahmad, M.U. Minhas, R. Tulain, K. Barkat, I. Khalid, Q. Khalid, Chitosan/Xanthan Gum Based Hydrogels as Potential Carrier for an Antiviral Drug: Fabrication, Characterization, and Safety Evaluation, Front. Chem., 8 (2020) 50.
  • L.J. del Valle, A. Diaz, J. Puiggali, Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives, Gels, 3 (2017) 27.
  • H. Kono, T. Teshirogi, Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery, Int. J. Biol. Macromol., 72 (2015) 299-308.
  • Y. Moukbil, F.N. Oktar, B. Ozbek, D. Ficai, A. Ficai, E. Andronescu, M. Sayıp Eroğlu, O. Gunduz, Biohydrogels for medical applications: A short review, Org. Commun., 11 (2018) 123-141.
  • S. Peers, A. Montembault, C. Ladaviere, Chitosan hydrogels for sustained drug delivery, J. Control. Release, 326 (2020) 150-163.
  • R.C.F. Cheung, T.B. Ng, J.H. Wong, W.Y. Chan, Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications, Mar. Drugs, 13 (2015) 5156-5186.
  • F.S. El-banna, M.E. Mahfouz, S. Leporatti, M. El-Kemary, N.A.N. Hanafy, Chitosan as a Natural Copolymer with Unique Properties for the Development of Hydrogels, Appl. Sci-Basel., 9 (2019) 2193.
  • D. Zhao, S. Yu, B. Sun, S. Gao, S. Guo, K. Zhao, Biomedical Applications of Chitosan and Its Derivative Nanoparticles, Polymers, 10 (2018) 462.
  • E.S. Abdou, K.S.A. Nagy, M.Z. Elsabee, Extraction and characterization of chitin and chitosan from local sources, Bioresour. Technol., 99 (2008) 1359-1367.
  • S.S.A. Loutfy, M.H. Elberry, K.Y. Farroh, H.T. Mohamed, A.A. Mohamed, E.B. Mohamed, A.H.I. Faraag, S.A. Mousa, Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines, Int. J. Nanomedicine, 15 (2020) 2699-2715.
  • S. Mizrahy, D. Peer, Polysaccharides as building blocks for nanotherapeutics, Chem. Soc. Rev., 41 (2012) 2623-2640.
  • J.X. Zhang, P.X. Ma, Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective, Adv. Drug Deliv. Rev., 65 (2013) 1215-1233.
  • P. Saokham, C. Muankaew, P. Jansook, T. Loftsson, Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes, Molecules, 23 (2018) 1161.
  • C.A.R. Barragán, E.R.M. Balleza, L. García-Uriostegui, J.A.A. Ortega, G. Toriz, E. Delgado, Rheological characterization of new thermosensitive hydrogels formed by chitosan, glycerophosphate, and phosphorylated β-cyclodextrin, Carbohydr. Polym., 201 (2018) 471-481.
  • S.A. Khan, W. Azam, A. Ashames, K.M. Fahalelebom, K. Ullah, A. Mannan, G. Murtaza, β-Cyclodextrin-based (IA-co-AMPS) Semi-IPNs as smart biomaterials for oral delivery of hydrophilic drugs: Synthesis, characterization, in-Vitro and in-Vivo evaluation, J. Drug Deliv. Sci. Technol., 60 (2020) 101970.
  • H.Y. Zhou, Z.Y. Wang, X.Y. Duan, L.J. Jiang, P.P. Cao, J.X. Li, J.B. Li, Design and evaluation of chitosan-β-cyclodextrin based thermosensitive hydrogel, Biochem. Eng. J., 111 (2016) 100-107.
  • K. Yang, S. Wan, B. Chen, W. Gao, J. Chen, M. Liu, B. He, H. Wu, Dual pH and temperature responsive hydrogels based on beta-cyclodextrin derivatives for atorvastatin delivery, Carbohydr. Polym., 136 (2016) 300-6.
  • T.F.S. Evangelista, G.R.S. Andrade, K.N.S. Nascimento, S.B. dos Santos, M.F. Coata Santos, C.R.M. Doca, C.S. Estevam, I.F. Gimenez, L.E. Almeida, Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release, Carbohydr. Polym., 245 (2020) 116592.
  • N.S. Malik, M. Ahmad, M.U. Minhas, Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir, PLoS ONE, 12 (2017) e0172727.
  • W. Wang, S. Bo, S. Li, W. Qin, Determination of the Mark-Houwink Equation for Chitosans with Different Degrees of Deacetylation, Int. J. Biol. Macromol., 13 (1991) 281-285.
  • A. Rasool, S. Ata, A. Islam, M. Rizwan, M.k. Azeem, A. Mehmood, R.U. Khan, A.R. Qureshi, H.A. Mahmood, Kinetics and controlled release of lidocaine from novel carrageenan and alginate-based blend hydrogels, Int. J. Biol. Macromol., 147 (2020) 67-68.
  • N.R. Vyavahare, M.G. Kulkarni, M.R.A, Zero order release from hydrogels, J. Membr. Sci., 54 (1990) 221-228.
  • H. Hosseinzadeh, Novel interpenetrating polymer network based on chitosan for the controlled release of cisplatin, JBASR, 2 (2012) 2200-2203.
  • S. Khan, N.M. Ranjha, Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels, Polym. Bull., 71 (2014) 2133-2158.
  • P.L. Ritger, N.A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, J. Control. Release, 5 (1987) 23-36.
  • S. Morariu, M. Bercea, L.M. Gradinaru, I. Rosca, M. Avadanei, Versatile pol(viny alcohol)/clay physical hydrogels with tailorable structure as potantial candidates for wound healing applications, Mat. Sci. Eng. C-Mater., 109 (2020) 110395.
  • M. Kaya, F. Dudakli, M. Asan-Ozusaglam, Y.S. Cakmak, T. Baran, A. Mentes, S. Erdogan, Porous and nanofiber alpha-chitosan obtained from blue crab (Callinectes sapidus) tested for antimicrobial and antioxidant activities, Lwt-Food Sci. Technol., 65 (2016) 1109-1117.
  • S. Erdogan, Textile finishing with chitosan and silver nanoparticles against Escherichia coli ATCC 8739, Trak. Univ. J. Nat. Sci., 21 (2020) 21-32.
  • G. Michailidou, E.N. Koukaras, D.N. Bikiaris, Vanillin chitosan miscible hydrogel blends and their prospects for 3D printing biomedical applications, Int. J. Biol. Macromol., 192 (2021) 1266-1275.
  • L.C. Gomes, S.I. Faria, J. Valcarcel, J.A. Vazquez, M.A. Cerqueira, L. Pastrana, A.I. Bourbon, F.J. Mergulhao, The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo opalescens for Food Packaging Applications, Mar. Drugs, 19 (2021) 384.
  • S.M. Joseph, S. Krishnamoorthy, R. Paranthaman, J.A. Moses, C. Anandharamakrishnan, A review on source-specific chemistry, functionality, and applications of chitin and chitosan, Carbohydr. Polym. Technol. Appl., 2 (2021) 100036.
  • I. Aranaz, A.R. Alcántara, M.C. Civera, C. Arias, B. Elorza, A.H. Caballero, N. Acosta, Chitosan: An Overview of Its Properties and Applications, Polymers, 13 (2021) 3256.
  • M. Rajabi, M. McConnell, J. Cabral, M.A. Ali, Chitosan hydrogels in 3D printing for biomedical applications, Carbohydr. Polym., 260 (2021) 117768.
  • H.Y. Zhou, X.G. Chen, M. Kong, C.S. Liu, D.S. Cha, J.F. Kennedy, Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system, Carbohydr. Polym., 73 (2008) 265-273.
  • D. Han, Z. Han, L. Liu, Y. Wang, S Xin, H. Zhang, Z. Yu, Solubility Enhancement of Myricetin by Inclusion Complexation with Heptakis-O-(2-Hydroxypropyl)-β-Cyclodextrin: A Joint Experimental and Theoretical Study, Int. J. Mol. Sci., 21 (2020) 766.
  • G. Paun, E. Neagu, A. Tache, G.L. Radu, New type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane for gallic acid encapsulation and controlled release, Acta Chim. Slov., 61 (2014) 27-33.
  • E.M. Sultanova, M.K. Salakhutdinova, Y.I. Oshchepkova, A.M. Asrorov, M.J. Oripova, U.J. Ishimov, S.I. Salikhov, Chitosan Hydrogel Improves Bioavailability of Megosin, Eur. Pharm. J., 67 (2019) 1-6.
  • N.S. Malik, M. Ahmad, M.S. Alqahtani, A. Mahmood, K. Barkat, M.T. Khan, U.R. Tulain, A. Rashid, β-cyclodextrin chitosan-based hydrogels with tunable pH-responsive properties for controlled release of acyclovir: design, characterization, safety, and pharmacokinetic evaluation, Drug Deliv., 28 (2021) 1093-1108.
  • Y. Wang, J. Wang, Z. Yuan, H. Han, T. Li, L. Li, X. Guo, Chitosan cross-linked poly(acrylic acid) hydrogels: Drug release control and mechanism, Colloids Surf. B., 152 (2017) 252-259.
  • X. Hu, L. Feng, W. Wei, et al, Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethyla-crylamide-co-2-hydroxyethyl methacrylate), Carbohydr. Polym., 105 (2014) 135-144.
  • M.E.A. Ali, M.M.S. Aboelfadl, A.M. Selim, H.F. Khalil, G.M. Elkady, Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases, Sep. Sci. Technol., 53 (2018) 2870-2881.
  • E.C. Elionai, W.N. Mussel, J.M. Resende, S.L. Fialho, J. Barbosa, E. Carignani, M. Geppi, M.I. Yoshida, Characterization of tenofovir disoproxil fumarate and its behavior under heating, Cryst. Growth Des., 15 (2015) 1915-1922.
  • M. Bajpai, S. Bajpai, P. Jyotishi, Water absorption and moisture per-meation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films, Int. J Biol. Macromol., 84 (2016) 1-9.
  • Y.X. Wang, Y.P. Qin, Z.J. Kong, Y.J. Wang, L.L. Ma, Glutaraldehyde Cross-linked Silk Fibroin Films for Controlled Release, Advances in Materials and Materials Processing Iv, Pts 1 and 2, 887-888 (2014) 541-546.
  • G.R. Fulmer, A.J.M. Miller, N.H. Sherden, H.E. Gottlieb, A. Nudelman, B.M. Stoltz, J.E. Bercaw, Karen I. Goldberg, NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist, Organometallics, 29 (2010) 2176-2179.
  • J. López-Cervantes, D.I. Sánchez-Machado, R.G. Sánchez-Duarte, M.A. Correa-Murrieta, Study of a fixed-bed column in the adsorption of an azo dye from an aqueous medium using a chitosan-glutaraldehyde biosorbent, Adsorp. Sci. Technol., 36 (2018) 215-232.
  • S. Chatterjee, P.C.L. Hui, C.W. Kan, W. Wang, Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy, Sci. Rep., 9 (2019) 11658.
  • Z. Aytac, S.I. Kusku, E. Durgun, T. Uyar, Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid, Mater. Sci. Eng. C-Mater. Biol. Appl., 63 (2016) 231-239.
  • K. Sichilongo, Z.G. Keolopile, S. Ndlovu, E. Mwando Jr., C. Shaba, E. Massele, Characterization of tenofovir, tenofovir disoproxil fumarate and emtricitabine in aqueous solutions containing sodium ions using ESI-MS, NMR and Ab initio calculations, Int. J. Mass Spectrom., 410 (2016) 1-11.
  • G. Yurtdaş Kırmızılıoğlu, Host-guest inclusion complex of desloratadine with 2(hydroxy)propyl-β-cyclodextrin (HP-β-CD): Preparation, binding behaviors and dissolution properties, J. Res. Pharm., 24 (2020) 693-707.
  • B. Tasdelen, N. Kayaman-Apohan, O. Güven, B.M. Baysal, Swelling and diffusion studies of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels in water and aqueous solutions of drugs, J. Appl. Polym. Sci., 91 (2004) 911-915.
  • T. Demirci, M. Erginer Hasköylü, M.S. Eroğlu, J. Hemberger, E. Toksoy Öner, Levan-based hydrogels for controlled release of Amphotericin B for dermal local antifungal therapy of Candidiasis, Eur. J. Pharm. Sci., 145 (2020) 105255.
  • B. Nigusse, T. Gebre-Mariam, A. Belete, Design, development and optimization of sustained release floating, bioadhesive and swellable matrix tablet of ranitidine hydrochloride. PLoS ONE, 16 (2021) e0253391.
  • L.P. Jahromi, M. Ghazali, Hb. Ashrafi, A. Azadi, A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles, Heliyon, 6 (2020) e03451.
  • G. Yasayan, Chitosan films and chitosan/pectin polyelectrolyte complexes encapsulating silver sulfadiazine for wound healing, Istanbul J. Pharm., 50: (2020) 238-244.
  • H.Y. Zhou, Z.Y. Wang, X.Y. Duan, L.J. Jiang, P.P. Cao, J.X. Li, J.B. Li, Design and evaluation of chitosan-β-cyclodextrin based thermosensitive hydrogel, Biochem. Eng. J., 111 (2016) 100-107.
  • M. Suhail, Y.F. Shao, Q.L. Vu, P.C. Wu, Designing of pH-Sensitive Hydrogels for Colon Targeted Drug Delivery; Characterization and In Vitro Evaluation, Gels, 8 (2022) 155.
  • N.S. Heredia, K. Vizuete, M. Flores-Calero, V.K. Pazmiño, F. Pilaquinga, B. Kumar et al, Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid), PLoS ONE, 17 (2022) e0264825.
  • J. Bhasarkar, D. Bal, Kinetic investigation of a controlled drug delivery system based on alginate scaffold with embedded voids, J. Appl. Biomater. Funct. Mater., 17 (2019) 2280800018817462.
Year 2024, Volume: 52 Issue: 2, 97 - 115, 01.04.2024
https://doi.org/10.15671/hjbc.1335348

Abstract

Project Number

TUBAP 2020/149

References

  • WHO, 2021a. “World Health Organisation, Coronavirus (COVID-19)”, https://covid19.who.int/ (Erişim tarihi: 29.10.2021)
  • K. Kurt, L. Dönbak, A. Kayraldız, Tenofovir Disoproxil Fumarate in the Treatment of AIDS, Archives Medical Review Journal, 24 (2015) 119-134.
  • WHO, 2021b. “World Health Organisation, Hepatitis B”, https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (Erişim tarihi: 29.10.2021)
  • UNAIDS, 2021. “The Joint United Nations Programme on HIV/AIDS, Global HIV & AIDS statistics-Fact sheet”, https://www.unaids.org/en/resources/fact-sheet (Erişim tarihi: 02.12.2021)
  • D. Yu, J. Heathcote, Tenofovir in the treatment of chronic hepatitis B, Therapy, 8 (2011) 527-544.
  • J.E. Gallant, S. Deresinski, Tenofovir disoproxil fumarate, Clin. Infect. Dis., 37 (2003) 944-950.
  • S.M. Ecin, N. Çalık Başaran, M. Aladağ, Evaluation of the Effectiveness of Tenofovir in Chronic Hepatitis B Patients, Acta Medica, 51 (2020) 9-14.
  • J. Li, D.H. Zhang, X.X. Zhang, The Occurrence of rtA194T Mutant After Long-Term Lamivudine Monotherapy Remains Sensitive to Tenofovir Disoproxil Fumarate: A Case Report, Infect. Drug Resist., 14 (2021) 1013-1017.
  • S. Selvaraj, V. Niraimathi, M. Nappinnai, Formulation and evaluation of acyclovir loaded chitosan nanoparticles, Int. J. Pharm. Anal. Res., 5 (2016) 619-629.
  • M.M. Al-Tabakha, S.A. Khan, A. Ashames, H. Ullah, K. Ullah, G. Murtaza, N. Hassan, Synthesis, Characterization and Safety Evaluation of Sericin-Based Hydrogels for Controlled Delivery of Acyclovir, Pharmaceuticals, 14 (2021) 234.
  • N.S. Malik, M. Ahmad, M.U. Minhas, R. Tulain, K. Barkat, I. Khalid, Q. Khalid, Chitosan/Xanthan Gum Based Hydrogels as Potential Carrier for an Antiviral Drug: Fabrication, Characterization, and Safety Evaluation, Front. Chem., 8 (2020) 50.
  • L.J. del Valle, A. Diaz, J. Puiggali, Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives, Gels, 3 (2017) 27.
  • H. Kono, T. Teshirogi, Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery, Int. J. Biol. Macromol., 72 (2015) 299-308.
  • Y. Moukbil, F.N. Oktar, B. Ozbek, D. Ficai, A. Ficai, E. Andronescu, M. Sayıp Eroğlu, O. Gunduz, Biohydrogels for medical applications: A short review, Org. Commun., 11 (2018) 123-141.
  • S. Peers, A. Montembault, C. Ladaviere, Chitosan hydrogels for sustained drug delivery, J. Control. Release, 326 (2020) 150-163.
  • R.C.F. Cheung, T.B. Ng, J.H. Wong, W.Y. Chan, Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications, Mar. Drugs, 13 (2015) 5156-5186.
  • F.S. El-banna, M.E. Mahfouz, S. Leporatti, M. El-Kemary, N.A.N. Hanafy, Chitosan as a Natural Copolymer with Unique Properties for the Development of Hydrogels, Appl. Sci-Basel., 9 (2019) 2193.
  • D. Zhao, S. Yu, B. Sun, S. Gao, S. Guo, K. Zhao, Biomedical Applications of Chitosan and Its Derivative Nanoparticles, Polymers, 10 (2018) 462.
  • E.S. Abdou, K.S.A. Nagy, M.Z. Elsabee, Extraction and characterization of chitin and chitosan from local sources, Bioresour. Technol., 99 (2008) 1359-1367.
  • S.S.A. Loutfy, M.H. Elberry, K.Y. Farroh, H.T. Mohamed, A.A. Mohamed, E.B. Mohamed, A.H.I. Faraag, S.A. Mousa, Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines, Int. J. Nanomedicine, 15 (2020) 2699-2715.
  • S. Mizrahy, D. Peer, Polysaccharides as building blocks for nanotherapeutics, Chem. Soc. Rev., 41 (2012) 2623-2640.
  • J.X. Zhang, P.X. Ma, Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective, Adv. Drug Deliv. Rev., 65 (2013) 1215-1233.
  • P. Saokham, C. Muankaew, P. Jansook, T. Loftsson, Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes, Molecules, 23 (2018) 1161.
  • C.A.R. Barragán, E.R.M. Balleza, L. García-Uriostegui, J.A.A. Ortega, G. Toriz, E. Delgado, Rheological characterization of new thermosensitive hydrogels formed by chitosan, glycerophosphate, and phosphorylated β-cyclodextrin, Carbohydr. Polym., 201 (2018) 471-481.
  • S.A. Khan, W. Azam, A. Ashames, K.M. Fahalelebom, K. Ullah, A. Mannan, G. Murtaza, β-Cyclodextrin-based (IA-co-AMPS) Semi-IPNs as smart biomaterials for oral delivery of hydrophilic drugs: Synthesis, characterization, in-Vitro and in-Vivo evaluation, J. Drug Deliv. Sci. Technol., 60 (2020) 101970.
  • H.Y. Zhou, Z.Y. Wang, X.Y. Duan, L.J. Jiang, P.P. Cao, J.X. Li, J.B. Li, Design and evaluation of chitosan-β-cyclodextrin based thermosensitive hydrogel, Biochem. Eng. J., 111 (2016) 100-107.
  • K. Yang, S. Wan, B. Chen, W. Gao, J. Chen, M. Liu, B. He, H. Wu, Dual pH and temperature responsive hydrogels based on beta-cyclodextrin derivatives for atorvastatin delivery, Carbohydr. Polym., 136 (2016) 300-6.
  • T.F.S. Evangelista, G.R.S. Andrade, K.N.S. Nascimento, S.B. dos Santos, M.F. Coata Santos, C.R.M. Doca, C.S. Estevam, I.F. Gimenez, L.E. Almeida, Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release, Carbohydr. Polym., 245 (2020) 116592.
  • N.S. Malik, M. Ahmad, M.U. Minhas, Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir, PLoS ONE, 12 (2017) e0172727.
  • W. Wang, S. Bo, S. Li, W. Qin, Determination of the Mark-Houwink Equation for Chitosans with Different Degrees of Deacetylation, Int. J. Biol. Macromol., 13 (1991) 281-285.
  • A. Rasool, S. Ata, A. Islam, M. Rizwan, M.k. Azeem, A. Mehmood, R.U. Khan, A.R. Qureshi, H.A. Mahmood, Kinetics and controlled release of lidocaine from novel carrageenan and alginate-based blend hydrogels, Int. J. Biol. Macromol., 147 (2020) 67-68.
  • N.R. Vyavahare, M.G. Kulkarni, M.R.A, Zero order release from hydrogels, J. Membr. Sci., 54 (1990) 221-228.
  • H. Hosseinzadeh, Novel interpenetrating polymer network based on chitosan for the controlled release of cisplatin, JBASR, 2 (2012) 2200-2203.
  • S. Khan, N.M. Ranjha, Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels, Polym. Bull., 71 (2014) 2133-2158.
  • P.L. Ritger, N.A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, J. Control. Release, 5 (1987) 23-36.
  • S. Morariu, M. Bercea, L.M. Gradinaru, I. Rosca, M. Avadanei, Versatile pol(viny alcohol)/clay physical hydrogels with tailorable structure as potantial candidates for wound healing applications, Mat. Sci. Eng. C-Mater., 109 (2020) 110395.
  • M. Kaya, F. Dudakli, M. Asan-Ozusaglam, Y.S. Cakmak, T. Baran, A. Mentes, S. Erdogan, Porous and nanofiber alpha-chitosan obtained from blue crab (Callinectes sapidus) tested for antimicrobial and antioxidant activities, Lwt-Food Sci. Technol., 65 (2016) 1109-1117.
  • S. Erdogan, Textile finishing with chitosan and silver nanoparticles against Escherichia coli ATCC 8739, Trak. Univ. J. Nat. Sci., 21 (2020) 21-32.
  • G. Michailidou, E.N. Koukaras, D.N. Bikiaris, Vanillin chitosan miscible hydrogel blends and their prospects for 3D printing biomedical applications, Int. J. Biol. Macromol., 192 (2021) 1266-1275.
  • L.C. Gomes, S.I. Faria, J. Valcarcel, J.A. Vazquez, M.A. Cerqueira, L. Pastrana, A.I. Bourbon, F.J. Mergulhao, The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo opalescens for Food Packaging Applications, Mar. Drugs, 19 (2021) 384.
  • S.M. Joseph, S. Krishnamoorthy, R. Paranthaman, J.A. Moses, C. Anandharamakrishnan, A review on source-specific chemistry, functionality, and applications of chitin and chitosan, Carbohydr. Polym. Technol. Appl., 2 (2021) 100036.
  • I. Aranaz, A.R. Alcántara, M.C. Civera, C. Arias, B. Elorza, A.H. Caballero, N. Acosta, Chitosan: An Overview of Its Properties and Applications, Polymers, 13 (2021) 3256.
  • M. Rajabi, M. McConnell, J. Cabral, M.A. Ali, Chitosan hydrogels in 3D printing for biomedical applications, Carbohydr. Polym., 260 (2021) 117768.
  • H.Y. Zhou, X.G. Chen, M. Kong, C.S. Liu, D.S. Cha, J.F. Kennedy, Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system, Carbohydr. Polym., 73 (2008) 265-273.
  • D. Han, Z. Han, L. Liu, Y. Wang, S Xin, H. Zhang, Z. Yu, Solubility Enhancement of Myricetin by Inclusion Complexation with Heptakis-O-(2-Hydroxypropyl)-β-Cyclodextrin: A Joint Experimental and Theoretical Study, Int. J. Mol. Sci., 21 (2020) 766.
  • G. Paun, E. Neagu, A. Tache, G.L. Radu, New type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane for gallic acid encapsulation and controlled release, Acta Chim. Slov., 61 (2014) 27-33.
  • E.M. Sultanova, M.K. Salakhutdinova, Y.I. Oshchepkova, A.M. Asrorov, M.J. Oripova, U.J. Ishimov, S.I. Salikhov, Chitosan Hydrogel Improves Bioavailability of Megosin, Eur. Pharm. J., 67 (2019) 1-6.
  • N.S. Malik, M. Ahmad, M.S. Alqahtani, A. Mahmood, K. Barkat, M.T. Khan, U.R. Tulain, A. Rashid, β-cyclodextrin chitosan-based hydrogels with tunable pH-responsive properties for controlled release of acyclovir: design, characterization, safety, and pharmacokinetic evaluation, Drug Deliv., 28 (2021) 1093-1108.
  • Y. Wang, J. Wang, Z. Yuan, H. Han, T. Li, L. Li, X. Guo, Chitosan cross-linked poly(acrylic acid) hydrogels: Drug release control and mechanism, Colloids Surf. B., 152 (2017) 252-259.
  • X. Hu, L. Feng, W. Wei, et al, Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethyla-crylamide-co-2-hydroxyethyl methacrylate), Carbohydr. Polym., 105 (2014) 135-144.
  • M.E.A. Ali, M.M.S. Aboelfadl, A.M. Selim, H.F. Khalil, G.M. Elkady, Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases, Sep. Sci. Technol., 53 (2018) 2870-2881.
  • E.C. Elionai, W.N. Mussel, J.M. Resende, S.L. Fialho, J. Barbosa, E. Carignani, M. Geppi, M.I. Yoshida, Characterization of tenofovir disoproxil fumarate and its behavior under heating, Cryst. Growth Des., 15 (2015) 1915-1922.
  • M. Bajpai, S. Bajpai, P. Jyotishi, Water absorption and moisture per-meation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films, Int. J Biol. Macromol., 84 (2016) 1-9.
  • Y.X. Wang, Y.P. Qin, Z.J. Kong, Y.J. Wang, L.L. Ma, Glutaraldehyde Cross-linked Silk Fibroin Films for Controlled Release, Advances in Materials and Materials Processing Iv, Pts 1 and 2, 887-888 (2014) 541-546.
  • G.R. Fulmer, A.J.M. Miller, N.H. Sherden, H.E. Gottlieb, A. Nudelman, B.M. Stoltz, J.E. Bercaw, Karen I. Goldberg, NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist, Organometallics, 29 (2010) 2176-2179.
  • J. López-Cervantes, D.I. Sánchez-Machado, R.G. Sánchez-Duarte, M.A. Correa-Murrieta, Study of a fixed-bed column in the adsorption of an azo dye from an aqueous medium using a chitosan-glutaraldehyde biosorbent, Adsorp. Sci. Technol., 36 (2018) 215-232.
  • S. Chatterjee, P.C.L. Hui, C.W. Kan, W. Wang, Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy, Sci. Rep., 9 (2019) 11658.
  • Z. Aytac, S.I. Kusku, E. Durgun, T. Uyar, Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid, Mater. Sci. Eng. C-Mater. Biol. Appl., 63 (2016) 231-239.
  • K. Sichilongo, Z.G. Keolopile, S. Ndlovu, E. Mwando Jr., C. Shaba, E. Massele, Characterization of tenofovir, tenofovir disoproxil fumarate and emtricitabine in aqueous solutions containing sodium ions using ESI-MS, NMR and Ab initio calculations, Int. J. Mass Spectrom., 410 (2016) 1-11.
  • G. Yurtdaş Kırmızılıoğlu, Host-guest inclusion complex of desloratadine with 2(hydroxy)propyl-β-cyclodextrin (HP-β-CD): Preparation, binding behaviors and dissolution properties, J. Res. Pharm., 24 (2020) 693-707.
  • B. Tasdelen, N. Kayaman-Apohan, O. Güven, B.M. Baysal, Swelling and diffusion studies of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels in water and aqueous solutions of drugs, J. Appl. Polym. Sci., 91 (2004) 911-915.
  • T. Demirci, M. Erginer Hasköylü, M.S. Eroğlu, J. Hemberger, E. Toksoy Öner, Levan-based hydrogels for controlled release of Amphotericin B for dermal local antifungal therapy of Candidiasis, Eur. J. Pharm. Sci., 145 (2020) 105255.
  • B. Nigusse, T. Gebre-Mariam, A. Belete, Design, development and optimization of sustained release floating, bioadhesive and swellable matrix tablet of ranitidine hydrochloride. PLoS ONE, 16 (2021) e0253391.
  • L.P. Jahromi, M. Ghazali, Hb. Ashrafi, A. Azadi, A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles, Heliyon, 6 (2020) e03451.
  • G. Yasayan, Chitosan films and chitosan/pectin polyelectrolyte complexes encapsulating silver sulfadiazine for wound healing, Istanbul J. Pharm., 50: (2020) 238-244.
  • H.Y. Zhou, Z.Y. Wang, X.Y. Duan, L.J. Jiang, P.P. Cao, J.X. Li, J.B. Li, Design and evaluation of chitosan-β-cyclodextrin based thermosensitive hydrogel, Biochem. Eng. J., 111 (2016) 100-107.
  • M. Suhail, Y.F. Shao, Q.L. Vu, P.C. Wu, Designing of pH-Sensitive Hydrogels for Colon Targeted Drug Delivery; Characterization and In Vitro Evaluation, Gels, 8 (2022) 155.
  • N.S. Heredia, K. Vizuete, M. Flores-Calero, V.K. Pazmiño, F. Pilaquinga, B. Kumar et al, Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid), PLoS ONE, 17 (2022) e0264825.
  • J. Bhasarkar, D. Bal, Kinetic investigation of a controlled drug delivery system based on alginate scaffold with embedded voids, J. Appl. Biomater. Funct. Mater., 17 (2019) 2280800018817462.
There are 69 citations in total.

Details

Primary Language English
Subjects Macromolecular Materials, Characterisation of Biological Macromolecules
Journal Section Research Article
Authors

Nuh Yaman 0000-0002-2550-469X

Sevil Erdogan 0000-0001-9148-911X

Betül Taşdelen 0000-0002-6541-7857

Project Number TUBAP 2020/149
Publication Date April 1, 2024
Acceptance Date December 9, 2023
Published in Issue Year 2024 Volume: 52 Issue: 2

Cite

APA Yaman, N., Erdogan, S., & Taşdelen, B. (2024). TENOFOVIR DISOPROXIL FUMARATE RELEASE FROM GLUTARALDEHYDE CROSS-LINKED CHITOSAN/Β-CYCLODEXTRIN HYDROGEL. Hacettepe Journal of Biology and Chemistry, 52(2), 97-115. https://doi.org/10.15671/hjbc.1335348
AMA Yaman N, Erdogan S, Taşdelen B. TENOFOVIR DISOPROXIL FUMARATE RELEASE FROM GLUTARALDEHYDE CROSS-LINKED CHITOSAN/Β-CYCLODEXTRIN HYDROGEL. HJBC. April 2024;52(2):97-115. doi:10.15671/hjbc.1335348
Chicago Yaman, Nuh, Sevil Erdogan, and Betül Taşdelen. “TENOFOVIR DISOPROXIL FUMARATE RELEASE FROM GLUTARALDEHYDE CROSS-LINKED CHITOSAN/Β-CYCLODEXTRIN HYDROGEL”. Hacettepe Journal of Biology and Chemistry 52, no. 2 (April 2024): 97-115. https://doi.org/10.15671/hjbc.1335348.
EndNote Yaman N, Erdogan S, Taşdelen B (April 1, 2024) TENOFOVIR DISOPROXIL FUMARATE RELEASE FROM GLUTARALDEHYDE CROSS-LINKED CHITOSAN/Β-CYCLODEXTRIN HYDROGEL. Hacettepe Journal of Biology and Chemistry 52 2 97–115.
IEEE N. Yaman, S. Erdogan, and B. Taşdelen, “TENOFOVIR DISOPROXIL FUMARATE RELEASE FROM GLUTARALDEHYDE CROSS-LINKED CHITOSAN/Β-CYCLODEXTRIN HYDROGEL”, HJBC, vol. 52, no. 2, pp. 97–115, 2024, doi: 10.15671/hjbc.1335348.
ISNAD Yaman, Nuh et al. “TENOFOVIR DISOPROXIL FUMARATE RELEASE FROM GLUTARALDEHYDE CROSS-LINKED CHITOSAN/Β-CYCLODEXTRIN HYDROGEL”. Hacettepe Journal of Biology and Chemistry 52/2 (April 2024), 97-115. https://doi.org/10.15671/hjbc.1335348.
JAMA Yaman N, Erdogan S, Taşdelen B. TENOFOVIR DISOPROXIL FUMARATE RELEASE FROM GLUTARALDEHYDE CROSS-LINKED CHITOSAN/Β-CYCLODEXTRIN HYDROGEL. HJBC. 2024;52:97–115.
MLA Yaman, Nuh et al. “TENOFOVIR DISOPROXIL FUMARATE RELEASE FROM GLUTARALDEHYDE CROSS-LINKED CHITOSAN/Β-CYCLODEXTRIN HYDROGEL”. Hacettepe Journal of Biology and Chemistry, vol. 52, no. 2, 2024, pp. 97-115, doi:10.15671/hjbc.1335348.
Vancouver Yaman N, Erdogan S, Taşdelen B. TENOFOVIR DISOPROXIL FUMARATE RELEASE FROM GLUTARALDEHYDE CROSS-LINKED CHITOSAN/Β-CYCLODEXTRIN HYDROGEL. HJBC. 2024;52(2):97-115.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc