Research Article
BibTex RIS Cite
Year 2024, Volume: 52 Issue: 4, 217 - 236, 11.10.2024
https://doi.org/10.15671/hjbc.1446425

Abstract

References

  • P.L. Smedley, D.G. Kinniburgh, A Review of the source, behavior and distribution of arsenic in natural waters, Appl. Geochem., 17 (2002) 517-568.
  • D. Mohan, Jr.C.U. Pittman, Review. Arsenic removal from water/wastewater using adsorbents A critical review, J. Hazard. Mater., 142 (2007) 1-53
  • A. Mudhoo, S.K. Sharma, V.K. Garg, C.H. Tseng, Arsenic: An overview of applications, health, and environmental concerns and removal processes, Crit. Rev. Environ. Sci. Technol., 41 (2011) 435-519.
  • T.S. Choong, T.G. Chuah, Y. Robiah, F.G. Koay, I. Azni, Arsenic toxicity, health hazards and removal techniques from water: an overview, Desalination, 217 (2007) 139-166.
  • L. Weerasundara, Y.S. Ok, J. Bundschuh, Selective removal of arsenic in water: A critical review, Environ. Pollut., 268 (2021) 115668.
  • B.S. Rathi, P.S. Kumar, A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system, J. Hazard. Mater., 418 (2021) 126299.
  • W.A.H. Altowayti, N. Othman, S. Shahir, A.F. Alshalif, A.A. Al-Gheethi, F.A.H. Al-Towayti, S.A. Haris, Removal of arsenic from wastewater by using different technologies and adsorbents: A review, Int. J. Environ. Sci. Technol., (2021) 1-24.
  • R. Singh, S. Singh, P. Parihar, V.P. Singh, S.M Prasad, Arsenic contamination, consequences and remediation techniques: a review, Ecotoxicol. Environ. Saf., 112 (2015) 247-270.
  • F. Dilpazeer, M. Munir, M.Y.J. Baloch, I. Shafiq, J. Iqbal, M. Saeed, I. Mahboob, A comprehensive review of the latest advancements in controlling arsenic contaminants in groundwater, Water, 15 (2023) 478.
  • S. Alka, S. Shahir, N. Ibrahim, M.J. Ndejiko, D.V.N. Vo, F. Abd Manan, Arsenic removal technologies and future trends: A mini review, J. Clean. Prod., 278 (2021) 123805.
  • H. Rahidul Hassan, A review on different arsenic removal techniques used for decontamination of drinking water, Environ. Pollut. Bioavailab., 35 (2023) 2165964.
  • M. F. Ahmed, An overview of arsenic removal technologies in Bangladesh and India, Proceedings of BUET-UNU international workshop on technologies for arsenic removal from drinking water, Dhaka, (2001) 5-7.
  • P.M. Kirisenage, S.M. Zulqarnain, J.L. Myers, B.D. Fahlman, A. Mueller, I. Marquez, Development of adsorptive membranes for selective removal of contaminants in water, Polymers, 14 (2022) 3146.
  • M. Chen, K. Shafer-Peltier, S.J. Randtke, E. Peltier, Modeling arsenic (V) removal from water by micellar enhanced ultrafiltration in the presence of competing anions, Chemosphere, 213 (2018) 285-294.
  • R.J.J. Chia, W.J. Lau, N. Yusof, H. Shokravi, A.F. Ismail, Adsorptive membranes for arsenic removal–principles, progress and challenges, Sep. Purif. Rev., 52(2023) 379-399.
  • M.R. Awual, M.A. Hossain, M.A. Shenashen, T. Yaita, S. Suzuki, A. Jyo, Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents, Environ. Sci. Pollut. Res. Int., 20 (2013) 421-430.
  • Y. Wang, D.C. Tsang, Effects of solution chemistry on arsenic (V) removal by low-cost adsorbents, J. Environ. Sci., 25(2013) 2291-2298.
  • I. Ali, New generation adsorbents for water treatment, Chem. Rev., 112 (2012) 5073-5091.
  • Y. Wang, D.C. Tsang, Effects of solution chemistry on arsenic (V) removal by low-cost adsorbents, J. Environ. Sci., 25(2013) 2291-2298.
  • G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin-Crini, Conventional and non-conventional adsorbents for wastewater treatment, Environ. Chem. Lett., 17 (2019) 195-213.
  • G. Ertürk, B. Mattiasson, Cryogels-versatile tools in bioseparation, J. Chromatogr. A, 1357(2014) 24-35.
  • D. Türkmen, M. Bakhshpour, S. Akgönüllü, S. Aşır, A. Denizli, Heavy metal ions removal from wastewater using cryogels: A review, Front. Sustain., 3 (2022) 765592.
  • A. Baimenov, D.A. Berillo, S.G. Poulopoulos, V.J. Inglezakis, A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions, Adv. Colloid Interface Sci., 276 (2020) 102088.
  • M. Bakhshpour, N. Idil, I. Perçin, A. Denizli, Biomedical applications of polymeric cryogels, Appl. Sci., 9 (2019) 553.
  • L.O. Jones, L. Williams, T. Boam, M. Kalmet, C. Oguike, F.L. Hatton, Cryogels: recent applications in 3D-bioprinting, injectable cryogels, drug delivery, and wound healing, Beilstein J. Org. Chem., 17(2021) 2553-2569.
  • M.E. Han, S.H. Kim, H.D. Kim, H.G. Yim, S.A. Bencherif, T.I. Kim, N.S. Hwang, Extracellular matrix-based cryogels for cartilage tissue engineering, Int. J. Biol. Macromol., 93 (2016) 1410-1419.
  • J. Li, Y. Wang, L. Zhang, Z. Xu, H. Dai, W. Wu, Nanocellulose/gelatin composite cryogels for controlled drug release, ACS Sustain. Chem. Eng., 7 (2019) 6381-6389.
  • M. Andaç, I.Y. Galaev, A. Denizli, Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, J. Chromatogr. B, 1021 (2016) 69-80.
  • L. Önnby, V. Pakade, B, Mattiasson, H. Kirsebom, Polymer composite adsorbents using particles of molecularly ımprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters, Water Res., 46 (2012) 4111-4120.
  • I.N. Savina, C.J. English, R.L. Whitby, Y. Zheng, A. Leistner, S.V. Mikhalovsky, A.B. Cundy, High efficiency removal of dissolved As (III) using iron nanoparticle-embedded macroporous polymer composites, J. Hazard. Mater., 192 (2011) 1002-1008.
  • L. Önnby, C. Svensson, L. Mbundi, R. Busquets, A. Cundy, H. Kirsebom, γ-Al2O3-based nanocomposite adsorbents for arsenic (V) removal: Assessing performance, toxicity and particle leakage, Sci. Total Environ., 473 (2014) 207-214.
  • L. Chen, X. Wang, W. Lu, X. Wu, J. Li, Molecular imprinting: perspectives and applications, Chem. Soc. Rev., 45 (2016) 2137-2211.
  • S. Jakavula, N. R. Biata, K. M. Dimpe, V. E. Pakade, P. N. Nomngongo, A critical review on the synthesis and application of ion-imprinted polymers for selective preconcentration, speciation, removal and determination of trace and essential metals from different matrices, Crit Rev. Anal. Chem., 52 (2022) 314-326.
  • Y. El Ouardi, A. Giove, M. Laatikainen, C. Branger, K. Laatikainen, Benefit of ion imprinting technique in solid-phase extraction of heavy metals, special focus on the last decade, J. Environ. Chem. Eng., 9 (2021) 106548.
  • Ö. Erdem, Y. Saylan, M. Andaç, A. Denizli, Molecularly imprinted polymers for removal of metal ions: An alternative treatment method, Biomimetics, 3 (2018) 38.
  • L. Wang, M. Pagett, W. Zhang, Molecularly imprinted polymer (MIP) based electrochemical sensors and their recent advances in health applications, Sens. Actuators Rep., 5 (2023) 100153.
  • D. Cunliffe, A. Kirby, C. Alexander, Molecularly imprinted drug delivery systems, Adv. Drug Deliv. Rev., 57 (2005) 1836-1853.
  • D. Türkmen, M. Özkaya Türkmen, S Akgönüllü, A. Denizli Development of ion imprinted based magnetic nanoparticles for selective removal of arsenic (III) and arsenic (V) from wastewater, Sep. Sci. Technol., 57 (2022) 990-999.
  • M.C. Teixeira, V.S.T. Ciminelli, M.S.S. Dantas, S.F. Diniz, H.A. Duarte, Raman spectroscopy and dft calculations of as(ııı) complexation with a cysteine-rich biomaterial, J. Colloid Interface Sci., 315 (2007) 128-134.
  • S. Shen, X.F. Li, W.R. Cullen, M. Weinfeld, X.C. Le, Arsenic binding to proteins, Chem. Rev., 113 (2013) 7769-7792.
  • D. Picón, N. Torasso, J.R.V. Baudrit, S. Cerveny, S. Goyanes, Bio-inspired membranes for adsorption of arsenic via immobilized L-Cysteine in highly hydrophilic electrospun nanofibers, Chem. Eng. Res. Des., 185 (2022) 108-118.
  • M. Tripathy, S. Padhiari, G. Hota, L-Cysteine-functionalized mesoporous magnetite nanospheres: synthesis and adsorptive application toward arsenic remediation, J. Chem. Eng. Data., 65 (2020) 3906-3919.
  • S. Özkara, M. Andaç, V. Karakoç, R. Say, A. Denizli, Ion-imprinted PHEMA based monolith for the removal of Fe3+ ions from aqueous solutions, J. Appl. Polym. Sci., 120 (2011) 1829-1836.
  • V. Karakoç, D. Türkmen, H. Shaikh, N. Bereli, C.A. Andac, A. Denizli, Synthesis and Characterization of Poly N-isopropylacrylamide Thermosensitive Based Cryogel, Hacettepe J. Biol. Chem., 41 (2013) 159-166.
  • L. Uzun, D. Türkmen, V. Karakoç, H. Yavuz, A. Denizli, Performance of protein-A-based affinity membranes for antibody purification. J. Biomater. Sci. Polym. Ed., 22 (2011) 2325-2341.
  • EPA, 2001, Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring; Final Rule (66 FR 6976), U.S. Environmental Protection Agency, USA, 174p,.
  • N.E. Labrou, Y.D. Clonis, The interaction of Candida boidinii formate dehydrogenase with a new family of chimeric biomimetic dye-ligands, Arch. Biochem. Biophys., 316 (1995) 169-178.
  • G.M. Finette, Q.M. Mao, M.T. Hearn, Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilised metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions, J. Chromatogr. A, 763 (1997) 71-90.
  • R.J. Umpleby, S.C. Baxter, Y. Chen, R.N. Shah, K.D. Shimizu, Characterization of molecularly imprinted polymers with the Langmuir− Freundlich isotherm, Anal.chem., 73 (2001) 4584-4591.
  • C.W. Cheung, J.F. Porter, G. Mckay, Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char, Water Res., 35 (2001) 605-612.
  • V. Karakoç, E. Erçağ. New generation nanoadsorbents and conventional techniques for arsenic removal from waters, JOTCSA, 11 (2024) 845-68.

Removal of As (V) from Water with Cryogels Prepared By Molecular Imprinting Technique

Year 2024, Volume: 52 Issue: 4, 217 - 236, 11.10.2024
https://doi.org/10.15671/hjbc.1446425

Abstract

The aim of this study is to selectively remove As(V) ions, the most common type of arsenic in drinking water and especially surface water. For this purpose, a super macroporous polymeric cryogel column was prepared using the molecular imprinting technique. MAC was chosen as the functional monomer due to the high affinity of arsenic to sulfhydryl (-SH) functional groups. MAC monomer was synthesized from the amino acid cysteine. Physicochemical properties of HEMA-based synthesized poly(HEMA-MAC) cryogel were determined by SEM FTIR surface area and swelling. Adsorption studies from water were carried out in a continuous system. Different parameters such as pH, flow rate, temperature, ionic strength and time were studied to determine the optimum conditions for the removal of As(V) ion from water. The maximum As(V) removal of poly(HEMA-MAC) cryogel was 189.4µg/g polymer at pH: 5.0 and 15ppm concentration. In selectivity studies conducted in the presence of PO43-, SO42- and NO3- ions. According to the relative k values obtained from the selectivity experiments, As IIP cryogel shows 1.52 times more selectivity for As(V) ion than PO43- ion, 2.61 times more selectivity for SO42- ion and 1.53 times more selectivity for NO3- ion than NIP cryogel. From the theoretical calculations, it was found that the As (V) adsorption was fit with the Langmuir isotherm and the adsorption process obeyed pseudo-second order kinetics.

References

  • P.L. Smedley, D.G. Kinniburgh, A Review of the source, behavior and distribution of arsenic in natural waters, Appl. Geochem., 17 (2002) 517-568.
  • D. Mohan, Jr.C.U. Pittman, Review. Arsenic removal from water/wastewater using adsorbents A critical review, J. Hazard. Mater., 142 (2007) 1-53
  • A. Mudhoo, S.K. Sharma, V.K. Garg, C.H. Tseng, Arsenic: An overview of applications, health, and environmental concerns and removal processes, Crit. Rev. Environ. Sci. Technol., 41 (2011) 435-519.
  • T.S. Choong, T.G. Chuah, Y. Robiah, F.G. Koay, I. Azni, Arsenic toxicity, health hazards and removal techniques from water: an overview, Desalination, 217 (2007) 139-166.
  • L. Weerasundara, Y.S. Ok, J. Bundschuh, Selective removal of arsenic in water: A critical review, Environ. Pollut., 268 (2021) 115668.
  • B.S. Rathi, P.S. Kumar, A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system, J. Hazard. Mater., 418 (2021) 126299.
  • W.A.H. Altowayti, N. Othman, S. Shahir, A.F. Alshalif, A.A. Al-Gheethi, F.A.H. Al-Towayti, S.A. Haris, Removal of arsenic from wastewater by using different technologies and adsorbents: A review, Int. J. Environ. Sci. Technol., (2021) 1-24.
  • R. Singh, S. Singh, P. Parihar, V.P. Singh, S.M Prasad, Arsenic contamination, consequences and remediation techniques: a review, Ecotoxicol. Environ. Saf., 112 (2015) 247-270.
  • F. Dilpazeer, M. Munir, M.Y.J. Baloch, I. Shafiq, J. Iqbal, M. Saeed, I. Mahboob, A comprehensive review of the latest advancements in controlling arsenic contaminants in groundwater, Water, 15 (2023) 478.
  • S. Alka, S. Shahir, N. Ibrahim, M.J. Ndejiko, D.V.N. Vo, F. Abd Manan, Arsenic removal technologies and future trends: A mini review, J. Clean. Prod., 278 (2021) 123805.
  • H. Rahidul Hassan, A review on different arsenic removal techniques used for decontamination of drinking water, Environ. Pollut. Bioavailab., 35 (2023) 2165964.
  • M. F. Ahmed, An overview of arsenic removal technologies in Bangladesh and India, Proceedings of BUET-UNU international workshop on technologies for arsenic removal from drinking water, Dhaka, (2001) 5-7.
  • P.M. Kirisenage, S.M. Zulqarnain, J.L. Myers, B.D. Fahlman, A. Mueller, I. Marquez, Development of adsorptive membranes for selective removal of contaminants in water, Polymers, 14 (2022) 3146.
  • M. Chen, K. Shafer-Peltier, S.J. Randtke, E. Peltier, Modeling arsenic (V) removal from water by micellar enhanced ultrafiltration in the presence of competing anions, Chemosphere, 213 (2018) 285-294.
  • R.J.J. Chia, W.J. Lau, N. Yusof, H. Shokravi, A.F. Ismail, Adsorptive membranes for arsenic removal–principles, progress and challenges, Sep. Purif. Rev., 52(2023) 379-399.
  • M.R. Awual, M.A. Hossain, M.A. Shenashen, T. Yaita, S. Suzuki, A. Jyo, Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents, Environ. Sci. Pollut. Res. Int., 20 (2013) 421-430.
  • Y. Wang, D.C. Tsang, Effects of solution chemistry on arsenic (V) removal by low-cost adsorbents, J. Environ. Sci., 25(2013) 2291-2298.
  • I. Ali, New generation adsorbents for water treatment, Chem. Rev., 112 (2012) 5073-5091.
  • Y. Wang, D.C. Tsang, Effects of solution chemistry on arsenic (V) removal by low-cost adsorbents, J. Environ. Sci., 25(2013) 2291-2298.
  • G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin-Crini, Conventional and non-conventional adsorbents for wastewater treatment, Environ. Chem. Lett., 17 (2019) 195-213.
  • G. Ertürk, B. Mattiasson, Cryogels-versatile tools in bioseparation, J. Chromatogr. A, 1357(2014) 24-35.
  • D. Türkmen, M. Bakhshpour, S. Akgönüllü, S. Aşır, A. Denizli, Heavy metal ions removal from wastewater using cryogels: A review, Front. Sustain., 3 (2022) 765592.
  • A. Baimenov, D.A. Berillo, S.G. Poulopoulos, V.J. Inglezakis, A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions, Adv. Colloid Interface Sci., 276 (2020) 102088.
  • M. Bakhshpour, N. Idil, I. Perçin, A. Denizli, Biomedical applications of polymeric cryogels, Appl. Sci., 9 (2019) 553.
  • L.O. Jones, L. Williams, T. Boam, M. Kalmet, C. Oguike, F.L. Hatton, Cryogels: recent applications in 3D-bioprinting, injectable cryogels, drug delivery, and wound healing, Beilstein J. Org. Chem., 17(2021) 2553-2569.
  • M.E. Han, S.H. Kim, H.D. Kim, H.G. Yim, S.A. Bencherif, T.I. Kim, N.S. Hwang, Extracellular matrix-based cryogels for cartilage tissue engineering, Int. J. Biol. Macromol., 93 (2016) 1410-1419.
  • J. Li, Y. Wang, L. Zhang, Z. Xu, H. Dai, W. Wu, Nanocellulose/gelatin composite cryogels for controlled drug release, ACS Sustain. Chem. Eng., 7 (2019) 6381-6389.
  • M. Andaç, I.Y. Galaev, A. Denizli, Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, J. Chromatogr. B, 1021 (2016) 69-80.
  • L. Önnby, V. Pakade, B, Mattiasson, H. Kirsebom, Polymer composite adsorbents using particles of molecularly ımprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters, Water Res., 46 (2012) 4111-4120.
  • I.N. Savina, C.J. English, R.L. Whitby, Y. Zheng, A. Leistner, S.V. Mikhalovsky, A.B. Cundy, High efficiency removal of dissolved As (III) using iron nanoparticle-embedded macroporous polymer composites, J. Hazard. Mater., 192 (2011) 1002-1008.
  • L. Önnby, C. Svensson, L. Mbundi, R. Busquets, A. Cundy, H. Kirsebom, γ-Al2O3-based nanocomposite adsorbents for arsenic (V) removal: Assessing performance, toxicity and particle leakage, Sci. Total Environ., 473 (2014) 207-214.
  • L. Chen, X. Wang, W. Lu, X. Wu, J. Li, Molecular imprinting: perspectives and applications, Chem. Soc. Rev., 45 (2016) 2137-2211.
  • S. Jakavula, N. R. Biata, K. M. Dimpe, V. E. Pakade, P. N. Nomngongo, A critical review on the synthesis and application of ion-imprinted polymers for selective preconcentration, speciation, removal and determination of trace and essential metals from different matrices, Crit Rev. Anal. Chem., 52 (2022) 314-326.
  • Y. El Ouardi, A. Giove, M. Laatikainen, C. Branger, K. Laatikainen, Benefit of ion imprinting technique in solid-phase extraction of heavy metals, special focus on the last decade, J. Environ. Chem. Eng., 9 (2021) 106548.
  • Ö. Erdem, Y. Saylan, M. Andaç, A. Denizli, Molecularly imprinted polymers for removal of metal ions: An alternative treatment method, Biomimetics, 3 (2018) 38.
  • L. Wang, M. Pagett, W. Zhang, Molecularly imprinted polymer (MIP) based electrochemical sensors and their recent advances in health applications, Sens. Actuators Rep., 5 (2023) 100153.
  • D. Cunliffe, A. Kirby, C. Alexander, Molecularly imprinted drug delivery systems, Adv. Drug Deliv. Rev., 57 (2005) 1836-1853.
  • D. Türkmen, M. Özkaya Türkmen, S Akgönüllü, A. Denizli Development of ion imprinted based magnetic nanoparticles for selective removal of arsenic (III) and arsenic (V) from wastewater, Sep. Sci. Technol., 57 (2022) 990-999.
  • M.C. Teixeira, V.S.T. Ciminelli, M.S.S. Dantas, S.F. Diniz, H.A. Duarte, Raman spectroscopy and dft calculations of as(ııı) complexation with a cysteine-rich biomaterial, J. Colloid Interface Sci., 315 (2007) 128-134.
  • S. Shen, X.F. Li, W.R. Cullen, M. Weinfeld, X.C. Le, Arsenic binding to proteins, Chem. Rev., 113 (2013) 7769-7792.
  • D. Picón, N. Torasso, J.R.V. Baudrit, S. Cerveny, S. Goyanes, Bio-inspired membranes for adsorption of arsenic via immobilized L-Cysteine in highly hydrophilic electrospun nanofibers, Chem. Eng. Res. Des., 185 (2022) 108-118.
  • M. Tripathy, S. Padhiari, G. Hota, L-Cysteine-functionalized mesoporous magnetite nanospheres: synthesis and adsorptive application toward arsenic remediation, J. Chem. Eng. Data., 65 (2020) 3906-3919.
  • S. Özkara, M. Andaç, V. Karakoç, R. Say, A. Denizli, Ion-imprinted PHEMA based monolith for the removal of Fe3+ ions from aqueous solutions, J. Appl. Polym. Sci., 120 (2011) 1829-1836.
  • V. Karakoç, D. Türkmen, H. Shaikh, N. Bereli, C.A. Andac, A. Denizli, Synthesis and Characterization of Poly N-isopropylacrylamide Thermosensitive Based Cryogel, Hacettepe J. Biol. Chem., 41 (2013) 159-166.
  • L. Uzun, D. Türkmen, V. Karakoç, H. Yavuz, A. Denizli, Performance of protein-A-based affinity membranes for antibody purification. J. Biomater. Sci. Polym. Ed., 22 (2011) 2325-2341.
  • EPA, 2001, Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring; Final Rule (66 FR 6976), U.S. Environmental Protection Agency, USA, 174p,.
  • N.E. Labrou, Y.D. Clonis, The interaction of Candida boidinii formate dehydrogenase with a new family of chimeric biomimetic dye-ligands, Arch. Biochem. Biophys., 316 (1995) 169-178.
  • G.M. Finette, Q.M. Mao, M.T. Hearn, Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilised metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions, J. Chromatogr. A, 763 (1997) 71-90.
  • R.J. Umpleby, S.C. Baxter, Y. Chen, R.N. Shah, K.D. Shimizu, Characterization of molecularly imprinted polymers with the Langmuir− Freundlich isotherm, Anal.chem., 73 (2001) 4584-4591.
  • C.W. Cheung, J.F. Porter, G. Mckay, Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char, Water Res., 35 (2001) 605-612.
  • V. Karakoç, E. Erçağ. New generation nanoadsorbents and conventional techniques for arsenic removal from waters, JOTCSA, 11 (2024) 845-68.
There are 51 citations in total.

Details

Primary Language English
Subjects Separation Science, Theory and Design of Materials
Journal Section Research Article
Authors

Veyis Karakoç 0000-0002-2511-6478

Hatice Bektaş 0009-0009-8252-8856

Deniz Turkmen 0000-0003-0161-172X

Adil Denizli 0000-0001-7548-5741

Publication Date October 11, 2024
Submission Date March 9, 2024
Acceptance Date May 15, 2024
Published in Issue Year 2024 Volume: 52 Issue: 4

Cite

APA Karakoç, V., Bektaş, H., Turkmen, D., Denizli, A. (2024). Removal of As (V) from Water with Cryogels Prepared By Molecular Imprinting Technique. Hacettepe Journal of Biology and Chemistry, 52(4), 217-236. https://doi.org/10.15671/hjbc.1446425
AMA Karakoç V, Bektaş H, Turkmen D, Denizli A. Removal of As (V) from Water with Cryogels Prepared By Molecular Imprinting Technique. HJBC. October 2024;52(4):217-236. doi:10.15671/hjbc.1446425
Chicago Karakoç, Veyis, Hatice Bektaş, Deniz Turkmen, and Adil Denizli. “Removal of As (V) from Water With Cryogels Prepared By Molecular Imprinting Technique”. Hacettepe Journal of Biology and Chemistry 52, no. 4 (October 2024): 217-36. https://doi.org/10.15671/hjbc.1446425.
EndNote Karakoç V, Bektaş H, Turkmen D, Denizli A (October 1, 2024) Removal of As (V) from Water with Cryogels Prepared By Molecular Imprinting Technique. Hacettepe Journal of Biology and Chemistry 52 4 217–236.
IEEE V. Karakoç, H. Bektaş, D. Turkmen, and A. Denizli, “Removal of As (V) from Water with Cryogels Prepared By Molecular Imprinting Technique”, HJBC, vol. 52, no. 4, pp. 217–236, 2024, doi: 10.15671/hjbc.1446425.
ISNAD Karakoç, Veyis et al. “Removal of As (V) from Water With Cryogels Prepared By Molecular Imprinting Technique”. Hacettepe Journal of Biology and Chemistry 52/4 (October 2024), 217-236. https://doi.org/10.15671/hjbc.1446425.
JAMA Karakoç V, Bektaş H, Turkmen D, Denizli A. Removal of As (V) from Water with Cryogels Prepared By Molecular Imprinting Technique. HJBC. 2024;52:217–236.
MLA Karakoç, Veyis et al. “Removal of As (V) from Water With Cryogels Prepared By Molecular Imprinting Technique”. Hacettepe Journal of Biology and Chemistry, vol. 52, no. 4, 2024, pp. 217-36, doi:10.15671/hjbc.1446425.
Vancouver Karakoç V, Bektaş H, Turkmen D, Denizli A. Removal of As (V) from Water with Cryogels Prepared By Molecular Imprinting Technique. HJBC. 2024;52(4):217-36.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc