Research Article
BibTex RIS Cite
Year 2025, , 51 - 58, 25.03.2025
https://doi.org/10.17350/HJSE19030000351

Abstract

Project Number

5190043

References

  • 1. Jeswiet J, Geiger M, Engel U, Kleiner M, Schikorra M, Duflou J, Neugebauer R, Bariani P. Bruschi S. Metal forming progress since 2000. CIRP J. Manuf. Sci. Technol. 2008, 11: 2-17. https://doi.org/10.1016/j.cirpj.2008.06.005
  • 2. Kimchi M, Philips DH. Resistance Spot Welding – Fundamentals and Applications for the Automotive Industry. 2nd edition. Switzerland, Springer Nature; 2023.
  • 3. Pouranvari M, Marashi SPH. Critical review of automotive steels spot welding: process, structure and properties, Sci. Technol. Weld. Join. 2013; 18(5):361-403. https://doi.org/10.1179/136217 1813Y.0000000120
  • 4. Zhang H, Senkara J. Resistance Welding – Fundamentals and Applications. 2nd edition. Boca Raton: CRC Press; 2011.
  • 5. Chabok A, van der Aa E, De Hosson JTM, Pei YT. Mechanical behavior and failure mechanism of resistance spot welded DP1000 dual phase steel. Mater. Des. 2017; 124:171-182. http:// dx. doi.org/10.1016/j.matdes.2017.03.070
  • 6. Noh W, Kim W, Yang X, Kang M, Lee M-G, Chung K. Simple and effective failure analysis of dissimilar resistance spot welded advanced high strength steel sheets. Int. J. Mech. Sci. 2017; 121:76- 89. http://dx.doi.org/10.1016/j.ijmecsci.2016.12.006
  • 7. Sivaraj P, Seeman M, Kanagarajan D, Seetharaman R. Influence of welding parameter on mechanical properties and microstructural features of resistance spot welded dual phase steel sheets joint. Mater. Today: Proc. 2020; 22(23):558-562. https://doi.org/10.1016/j.matpr.2019.08.201
  • 8. Jaber HL, Pouranvari M, Salim RK, Hashim FA, Marashi SPH. Peak load and energy absorption of DP600 advanced steel resistance spot welds. Ironmak Steelmak. 2017; 44(9):699-706. https://doi.org/10.1080/03019233.2016.1229880
  • 9. Chabok A, van der Aa E, Basu I, De Hosson JTM, Pei Y. Effect of pulse scheme on the microstructural evolution, residual stress state and mechanical performance of resistance spot welded DP1000-GI steel. Sci. Technol. Weld. Join. 2018; 23(8):649-658. https://doi.org/10.1080/13621718.2018.1452875
  • 10. Pouranvari M, Aghajani H, Ghasemi A. Enhanced mechanical properties of martensitic stainless steels resistance spot welds enabled by in situ rapid tempering. Sci. Technol. Weld. Join. 2020; 25(2):119-126. https://doi.org/10.1080/13621718.20 19.1641962
  • 11. Kim JW, Murugan, SP, Yoo, JH, Ashiri R, Park YD. Enhancing nugget size and weldable current range of ultra-high-strength steel using multi-pulse resistance spot welding. Sci. Technol. Weld. Join. 2019; 25(3):235-242. https://doi.org/10.1080/1 3621718.2019.1680483
  • 12. Soomro IA, Pedapati SR, Awang M. Optimization of postweld tempering pulse parameters for maximum load bearing and failure energy absorption in dual phase (DP590) steel resistance spot welds. Mater. Sci. Eng. A. 2021; 803:140713. https://doi.org/10.1016/j.msea.2020.140713
  • 13. Liu XD, Xu YB, Misra RDK, Peng F, Wang Y, Du YB. Mechanical properties in double pulse resistance spot welding of Q&P 980 steel. J. Mater. Process. Technol. 2019; 263: 186-197. https://doi. org/10.1016/j.jmatprotec.2018.08.018
  • 14. Mousavi Anijdan SH, Sabzi M, Ghobeiti-Hasab M, Roshan-Ghiyas A. Optimization of spot welding process parameters in dissimilar joint of dual phase steel DP600 and AISI 304 stainless steel to achieve the highest level of shear-tensile strength. Mater. Sci. Eng. A. 2018; 726:120-125. https://doi.org/10.1016/j. msea.2018.04.072
  • 15. Yuan X, Li C, Chen J, Li X, Liang X, Pan X. Resistance spot welding of dissimilar DP600 and DC54D steels. J. Mater. Process. Technol. 2017; 239:31-41. http://dx.doi.org/10.1016/j. jmatprotec.2016.08.012
  • 16. Zhang H, Qiu X, Xing F, Bai J, Chen J. Failure analysis of dissimilar thickness resistance spot welded joints in dual-phase steels during tensile shear test. Mater. Des. 2014; 55:366-372. http://dx.doi.org/10.1016/j.matdes.2013.09.040
  • 17. Onar V. Mechanical and Microstructural Characterizations of Resistance Spot Welded Dissimilar TWIP/304L Stainless Steel. Trans. Indian Inst. Met. 2022; 75(7):1731-1739. https://doi. org/10.1007/s12666-021-02446-9
  • 18. Özen F, Onar V, Bulca M, Aslanlar S. Resistance spot weldability of Fe-15.4Mn-2.1Al-1.2C twinning induced plasticity steel. Materialwiss. Werkstofftech. 2023; 54:857–870. https://doi. org/10.1002/mawe.202200241
  • 19. Özen F. Mechanical and microstructural characterization of resistance spot welded dissimilar TWIP1000/TRIP800 joints. Mater. Test. 2024; 66(1):9-21.
  • 20. Özen F, Aslanlar S. Mechanical and microstructural evaluation of resistance spot welded dissimilar TWIP/martensitic steel joints. J. Adv. Manuf. Technol. 2021; 113:3473-3489. https://doi. org/10.1007/s00170-021-06848-3

Effect of Double-Pulse Strategy on the Expulsion Formation and Peak Loads During Resistance Spot Welding of Dissimilar Thickness Ultra - High Strength MS1500 and Mild DD11 Steels

Year 2025, , 51 - 58, 25.03.2025
https://doi.org/10.17350/HJSE19030000351

Abstract

Resistance spot welding (RSW) is widely utilized in the automotive industry due to its high efficiency, flexibility, and compatibility with automation. These advantages make it a preferred method for joining advanced high-strength steels, enabling lightweight designs without compromising structural integrity. This study explores the mechanical properties of resistance spot-welded joints between ultra-high-strength MS1500 steel and hot-rolled DD11 steel, with a focus on single-pulse and double-pulse welding strategies. The effects of varying current levels were evaluated in terms of tensile-shear strength, failure energy, nugget diameter, hardness distribution, and microstructural transformations. In single-pulse welding, expulsion was observed at a current of 8.6 kA, limiting joint performance. Conversely, the double-pulse welding strategy provided enhanced control, yielding superior results. Optimal performance was achieved at a second welding current of 8.4 kA, with a tensile-shear strength increase of 11.6% and a fracture energy enhancement of 32.2% compared to single-pulse welding. Beyond 8.6 kA, expulsion caused inconsistencies in mechanical properties, highlighting the importance of current optimization in welding strategies. The findings demonstrate the effectiveness of the double-pulse welding strategy in improving the strength and quality of resistance spot-welded joints.

Supporting Institution

TÜBİTAK

Project Number

5190043

Thanks

The authors wish to thank the Turkish Research Council (TÜBİTAK) for financially supporting the project 5190043.

References

  • 1. Jeswiet J, Geiger M, Engel U, Kleiner M, Schikorra M, Duflou J, Neugebauer R, Bariani P. Bruschi S. Metal forming progress since 2000. CIRP J. Manuf. Sci. Technol. 2008, 11: 2-17. https://doi.org/10.1016/j.cirpj.2008.06.005
  • 2. Kimchi M, Philips DH. Resistance Spot Welding – Fundamentals and Applications for the Automotive Industry. 2nd edition. Switzerland, Springer Nature; 2023.
  • 3. Pouranvari M, Marashi SPH. Critical review of automotive steels spot welding: process, structure and properties, Sci. Technol. Weld. Join. 2013; 18(5):361-403. https://doi.org/10.1179/136217 1813Y.0000000120
  • 4. Zhang H, Senkara J. Resistance Welding – Fundamentals and Applications. 2nd edition. Boca Raton: CRC Press; 2011.
  • 5. Chabok A, van der Aa E, De Hosson JTM, Pei YT. Mechanical behavior and failure mechanism of resistance spot welded DP1000 dual phase steel. Mater. Des. 2017; 124:171-182. http:// dx. doi.org/10.1016/j.matdes.2017.03.070
  • 6. Noh W, Kim W, Yang X, Kang M, Lee M-G, Chung K. Simple and effective failure analysis of dissimilar resistance spot welded advanced high strength steel sheets. Int. J. Mech. Sci. 2017; 121:76- 89. http://dx.doi.org/10.1016/j.ijmecsci.2016.12.006
  • 7. Sivaraj P, Seeman M, Kanagarajan D, Seetharaman R. Influence of welding parameter on mechanical properties and microstructural features of resistance spot welded dual phase steel sheets joint. Mater. Today: Proc. 2020; 22(23):558-562. https://doi.org/10.1016/j.matpr.2019.08.201
  • 8. Jaber HL, Pouranvari M, Salim RK, Hashim FA, Marashi SPH. Peak load and energy absorption of DP600 advanced steel resistance spot welds. Ironmak Steelmak. 2017; 44(9):699-706. https://doi.org/10.1080/03019233.2016.1229880
  • 9. Chabok A, van der Aa E, Basu I, De Hosson JTM, Pei Y. Effect of pulse scheme on the microstructural evolution, residual stress state and mechanical performance of resistance spot welded DP1000-GI steel. Sci. Technol. Weld. Join. 2018; 23(8):649-658. https://doi.org/10.1080/13621718.2018.1452875
  • 10. Pouranvari M, Aghajani H, Ghasemi A. Enhanced mechanical properties of martensitic stainless steels resistance spot welds enabled by in situ rapid tempering. Sci. Technol. Weld. Join. 2020; 25(2):119-126. https://doi.org/10.1080/13621718.20 19.1641962
  • 11. Kim JW, Murugan, SP, Yoo, JH, Ashiri R, Park YD. Enhancing nugget size and weldable current range of ultra-high-strength steel using multi-pulse resistance spot welding. Sci. Technol. Weld. Join. 2019; 25(3):235-242. https://doi.org/10.1080/1 3621718.2019.1680483
  • 12. Soomro IA, Pedapati SR, Awang M. Optimization of postweld tempering pulse parameters for maximum load bearing and failure energy absorption in dual phase (DP590) steel resistance spot welds. Mater. Sci. Eng. A. 2021; 803:140713. https://doi.org/10.1016/j.msea.2020.140713
  • 13. Liu XD, Xu YB, Misra RDK, Peng F, Wang Y, Du YB. Mechanical properties in double pulse resistance spot welding of Q&P 980 steel. J. Mater. Process. Technol. 2019; 263: 186-197. https://doi. org/10.1016/j.jmatprotec.2018.08.018
  • 14. Mousavi Anijdan SH, Sabzi M, Ghobeiti-Hasab M, Roshan-Ghiyas A. Optimization of spot welding process parameters in dissimilar joint of dual phase steel DP600 and AISI 304 stainless steel to achieve the highest level of shear-tensile strength. Mater. Sci. Eng. A. 2018; 726:120-125. https://doi.org/10.1016/j. msea.2018.04.072
  • 15. Yuan X, Li C, Chen J, Li X, Liang X, Pan X. Resistance spot welding of dissimilar DP600 and DC54D steels. J. Mater. Process. Technol. 2017; 239:31-41. http://dx.doi.org/10.1016/j. jmatprotec.2016.08.012
  • 16. Zhang H, Qiu X, Xing F, Bai J, Chen J. Failure analysis of dissimilar thickness resistance spot welded joints in dual-phase steels during tensile shear test. Mater. Des. 2014; 55:366-372. http://dx.doi.org/10.1016/j.matdes.2013.09.040
  • 17. Onar V. Mechanical and Microstructural Characterizations of Resistance Spot Welded Dissimilar TWIP/304L Stainless Steel. Trans. Indian Inst. Met. 2022; 75(7):1731-1739. https://doi. org/10.1007/s12666-021-02446-9
  • 18. Özen F, Onar V, Bulca M, Aslanlar S. Resistance spot weldability of Fe-15.4Mn-2.1Al-1.2C twinning induced plasticity steel. Materialwiss. Werkstofftech. 2023; 54:857–870. https://doi. org/10.1002/mawe.202200241
  • 19. Özen F. Mechanical and microstructural characterization of resistance spot welded dissimilar TWIP1000/TRIP800 joints. Mater. Test. 2024; 66(1):9-21.
  • 20. Özen F, Aslanlar S. Mechanical and microstructural evaluation of resistance spot welded dissimilar TWIP/martensitic steel joints. J. Adv. Manuf. Technol. 2021; 113:3473-3489. https://doi. org/10.1007/s00170-021-06848-3
There are 20 citations in total.

Details

Primary Language English
Subjects Manufacturing and Industrial Engineering (Other)
Journal Section Research Articles
Authors

Mehmet Okan Görtan 0000-0002-6095-1161

Project Number 5190043
Publication Date March 25, 2025
Submission Date January 21, 2025
Acceptance Date March 21, 2025
Published in Issue Year 2025

Cite

Vancouver Görtan MO. Effect of Double-Pulse Strategy on the Expulsion Formation and Peak Loads During Resistance Spot Welding of Dissimilar Thickness Ultra - High Strength MS1500 and Mild DD11 Steels. Hittite J Sci Eng. 2025;12(1):51-8.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).