Review
BibTex RIS Cite
Year 2021, Volume: 8 Issue: 3, 207 - 220, 29.09.2021
https://doi.org/10.17350/HJSE19030000231

Abstract

References

  • Rabaia MKH, Abdelkareem MA, Sayed ET, Elsaid K, Chae KJ, Wilberforce T, et al. Environmental impacts of solar energy systems: A review. Sci Total Environ 2021;754:141989. https://doi.org/10.1016/j.scitotenv.2020.141989.
  • Motahhir S, El Hammoumi A, El Ghzizal A. The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm. J Clean Prod 2020;246:118983. https://doi.org/10.1016/j.jclepro.2019.118983.
  • Bahrami M, Zandi M, Gavagsaz R, Nahid-Mobarakeh B, Pierfederici S. A New Hybrid Method of MPPT for Photovoltaic Systems Based on FLC and Three Point-Weight Methods. Int. J. Adv. Sci. Technol., IEEE; 2016, p. 446–50.
  • Kumar M, Ban DK, Kim J. Photo-induced pyroelectric spikes for neuromorphic sensors. Mater Lett 2018;225:46–9. https://doi.org/10.1016/j.matlet.2018.04.106.
  • Lorenzo E. Solar electricity: engineering of photovoltaic systems. Earthscan/James & James; 1994.
  • Qi C, Ming Z. Photovoltaic Module Simulink Model for a Stand-alone PV System. Phys Procedia 2012;24:94–100. https://doi.org/10.1016/j.phpro.2012.02.015.
  • Kumar N, Hussain I, Singh B, Panigrahi BK. Framework of Maximum Power Extraction from Solar PV Panel Using Self Predictive Perturb and Observe Algorithm. IEEE Trans Sustain Energy 2018;9:895–903. https://doi.org/10.1109/TSTE.2017.2764266.
  • Motahhir S, El Hammoumi A, El Ghzizal A. Photovoltaic system with quantitative comparative between an improved MPPT and existing INC and P&O methods under fast varying of solar irradiation. Energy Reports 2018;4:341–50. https://doi.org/10.1016/j.egyr.2018.04.003.
  • Teshome DF, Lee CH, Lin YW, Lian KL. A modified firefly algorithm for photovoltaic maximum power point tracking control under partial shading. IEEE J Emerg Sel Top Power Electron 2017;5:661–71. https://doi.org/10.1109/JESTPE.2016.2581858.
  • Femia N, Petrone G, Spagnuolo G, Vitelli M. Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems. CRC Press, Taylor & Francis Group; 2017. https://doi.org/10.1201/b14303.
  • Christopher Iw, Assistant Professor S. Comparative Study of P&O and InC MPPT Algorithms. Am J Eng Res 2013;02:402–8.
  • Kota VR, Bhukya MN. A novel linear tangents based P&O scheme for MPPT of a PV system. Renew Sustain Energy Rev 2017;71:257–67. https://doi.org/10.1016/j.rser.2016.12.054.
  • Ishaque K, Salam Z, Lauss G. The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions. Appl Energy 2014;119:228–36. https://doi.org/10.1016/j.apenergy.2013.12.054.
  • Wasynczuk O. Dynamic Behavior of a Class of Photovoltaic Power Systems. IEEE Trans Power Appar Syst 1983;PAS-102:3031–7.
  • Safari A, Mekhilef S. Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE Trans Ind Electron 2011;58:1154–61. https://doi.org/10.1109/TIE.2010.2048834.
  • Elgendy MA, Zahawi B, Atkinson DJ. Assessment of the incremental conductance maximum power point tracking algorithm. IEEE Trans Sustain Energy 2013;4:108–17. https://doi.org/10.1109/TSTE.2012.2202698.
  • Tey KS, Mekhilef S. Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level. Sol Energy 2014;101:333–42. https://doi.org/10.1016/j.solener.2014.01.003.
  • Shengqing L, Fujun L, Jian Z, Wen C, Donghui Z. An improved MPPT control strategy based on incremental conductance method. Soft Comput 2020;24:6039–46. https://doi.org/10.1007/s00500-020-04723-z.
  • Algarín CR, Giraldo JT, Álvarez OR. Fuzzy logic based MPPT controller for a PV system. Energies 2017;10. https://doi.org/10.3390/en10122036.
  • Bendib B, Krim F, Belmili H, Almi MF, Bolouma S. An intelligent MPPT approach based on neural-network voltage estimator and fuzzy controller, applied to a stand-alone PV system. IEEE Int. Symp. Ind. Electron., IEEE; 2014, p. 404–9. https://doi.org/10.1109/ISIE.2014.6864647.
  • Yilmaz U, Kircay A, Borekci S. PV system fuzzy logic MPPT method and PI control as a charge controller. Renew Sustain Energy Rev 2018;81:994–1001. https://doi.org/10.1016/j.rser.2017.08.048.
  • Bollipo RB, Mikkili S, Bonthagorla PK. Critical Review on PV MPPT Techniques: Classical, Intelligent and Optimisation. IET Renew Power Gener 2020;14:1433–52. https://doi.org/10.1049/iet-rpg.2019.1163.
  • Joshi P, Arora S. Maximum power point tracking methodologies for solar PV systems – A review. Renew Sustain Energy Rev 2017;70:1154–77. https://doi.org/10.1016/j.rser.2016.12.019.
  • Bendib B, Belmili H, Krim F. A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renew Sustain Energy Rev 2015;45:637–48. https://doi.org/10.1016/j.rser.2015.02.009.
  • Karami N, Moubayed N, Outbib R. General review and classification of different MPPT Techniques. Renew Sustain Energy Rev 2017;68:1–18. https://doi.org/10.1016/j.rser.2016.09.132.
  • Asim M, Tariq M, Mallick MA, Ashraf I. An improved constant voltage based MPPT technique for PMDC motor. Int J Power Electron Drive Syst 2016;7:1330–6. https://doi.org/10.11591/ijpeds.v7i4.pp1330-1336.
  • Ahmad J. A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays. ICSTE 2010 - 2010 2nd Int. Conf. Softw. Technol. Eng. Proc., vol. 1, IEEE; 2010, p. 247–50. https://doi.org/10.1109/ICSTE.2010.5608868.
  • Enslin JHR, Wolf MS, Snyman DB, Swiegers W. Integrated photovoltaic maximum power point tracking converter. IEEE Trans Ind Electron 1997;44:769–73. https://doi.org/10.1109/41.649937.
  • Lopez-Lapeña O, Penella MT. Low-power FOCV MPPT controller with automatic adjustment of the sample&hold. Electron Lett 2012;48:1301–3. https://doi.org/10.1049/el.2012.1345.
  • Weddell AS, Merrett G V., Al-Hashimi BM. Ultra low-power photovoltaic MPPT technique for indoor and outdoor wireless sensor nodes. Proc. -Design, Autom. Test Eur. DATE, IEEE; 2011, p. 905–8. https://doi.org/10.1109/date.2011.5763302.
  • Sandali A, Oukhoya T, Cheriti A. Modeling and Design ofPV Grid Connected System Using a Modified Fractional Short-Circuit Current MPPT. 2014 Int. Renew. Sustain. Energy Conf., IEEE; 2014, p. 224–9. https://doi.org/10.1109/IRSEC.2014.7059859.
  • Masoum MAS, Dehbonei H, Fuchs EF. Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power point tracking. IEEE Trans Energy Convers 2004;19:652–3. https://doi.org/10.1109/TEC.2004.832449.
  • Sher HA, Murtaza AF, Noman A, Addoweesh KE, Al-Haddad K, Chiaberge M. A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT. IEEE Trans Sustain Energy 2015;6:1426–34. https://doi.org/10.1109/TSTE.2015.2438781.
  • Sankar M, Ramaprabha R. MODELLING AND SIMULATION OF MATLAB / SIMULINK BASED LOOKUP TABLE. ARPN J Eng Appl Sci 2013;8:948–53.
  • Kota VR, Bhukya MN. A simple and efficient MPPT scheme for PV module using 2-Dimensional lookup table. 2016 IEEE Power Energy Conf. Illinois, PECI 2016, IEEE; 2016, p. 2–8. https://doi.org/10.1109/PECI.2016.7459226.
  • Wang H, Vinayagam L, Jiang H, Cai ZQ, Ni Q, Li H. A new MPPT technique for the maximization of overall system output in solar generation. Proc Int Conf Power Electron Drive Syst 2015;2015-Augus:791–5. https://doi.org/10.1109/PEDS.2015.7203540.
  • Sanjeevikumar P, Grandi G, Wheeler PW, Blaabjerg F, Loncarski J. A simple MPPT algorithm for novel PV power generation system by high output voltage DC-DC boost converter. IEEE Int. Symp. Ind. Electron., vol. September, IEEE; 2015, p. 214–20. https://doi.org/10.1109/ISIE.2015.7281471.
  • Almutairi A, Abo-Khalil AG, Sayed K, Albagami N. MPPT for a PV grid-connected system to improve efficiency under partial shading conditions. Sustainability 2020;12:1–18. https://doi.org/10.3390/su122410310.
  • Kim SY, Park S, Jang SJ, Kim GH, Seo HR, Yu K. An effective POS MPPT control method for PV power generation system. Proc. - 12th Int. Conf. Electr. Mach. Syst. ICEMS 2009, IEEE; 2009, p. 1–6. https://doi.org/10.1109/ICEMS.2009.5382688.
  • Femia N, Petrone G, Spagnuolo G, Vitelli M. Optimization of perturb and observe maximum power point tracking method. IEEE Trans Power Electron 2005;20:963–73. https://doi.org/10.1109/TPEL.2005.850975.
  • Nedumgatt JJ, Jayakrishnan KB, Umashankar S, Vijayakumar D, Kothari DP. Perturb and observe MPPT algorithm for solar PV systems-modeling and simulation. Proc - 2011 Annu IEEE India Conf Eng Sustain Solut INDICON-2011 2011. https://doi.org/10.1109/INDCON.2011.6139513.
  • Sera D, Mathe L, Kerekes T, Spataru SV, Teodorescu R. On the perturb-and-observe and incremental conductance mppt methods for PV systems. IEEE J Photovoltaics 2013;3:1070–8. https://doi.org/10.1109/JPHOTOV.2013.2261118.
  • Femia N, Granozio D, Petrone G, Spagnuolo G, Vitelli M. Predictive & adaptive MPPT perturb and observe method. IEEE Trans Aerosp Electron Syst 2007;43:934–50. https://doi.org/10.1109/TAES.2007.4383584.
  • Piegari L, Rizzo R. Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking. IET Renew Power Gener 2010;4:317–28. https://doi.org/10.1049/iet-rpg.2009.0006.
  • Abdelsalam AK, Massoud AM, Ahmed S, Enjeti PN. High-performance adaptive Perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans Power Electron 2011;26:1010–21. https://doi.org/10.1109/TPEL.2011.2106221.
  • Bahari MI, Tarassodi P, Naeini YM, Khalilabad AK, Shirazi P. Modeling and Simulation Of Hill Climbig MPPT Algorithm For Photovoltaic Application. Int. Symp. Power Electron. Electr. Drives, Autom. Motion, IEEE; 2016, p. 1041–4.
  • Xiao W, Dunford WG. A Modified Adaptive Hill Climbing MPPT Method for Photovoltaic Power Systems. 35th Annu. IEEE Power Electron. Spec. Conf., Aachen, Germany: 2004, p. 1957–63.
  • Altas IH, Sharaf AM. A Novel On-Line MPP Search Algorithm For PV Arrays. IEEE Trans Energy Convers 1996;11:748–54.
  • Kitano T, Matsui M, Xu D hong. Power sensor-less MPPT control scheme utilizing power balance at DC link system design to ensure stability and response. IECON Proc. (Industrial Electron. Conf., vol. 2, 2001, p. 1309–14. https://doi.org/10.1109/iecon.2001.975971.
  • Shi Y, Li R, Xue Y, Li H. High-frequency-link-based grid-tied PV system with small DC-link capacitor and low-frequency ripple-free maximum power point tracking. IEEE Trans Power Electron 2016;31:328–39. https://doi.org/10.1109/TPEL.2015.2411858.
  • Mei Q, Shan M, Liu L, Guerrero JM. A novel improved variable step-size incremental-resistance MPPT method for PV systems. IEEE Trans Ind Electron 2011;58:2427–34. https://doi.org/10.1109/TIE.2010.2064275.
  • Lee JH, Bae HS, Cho BH. Advanced incremental conductance MPPT algorithm with a variable step size. EPE-PEMC 2006 12th Int. Power Electron. Motion Control Conf. Proc., 2007, p. 603–7. https://doi.org/10.1109/EPEPEMC.2006.283227.
  • Brambilla A, Gambarara M, Garutti A, Ronchi F. New approach to photovoltaic arrays maximum power point tracking. PESC Rec - IEEE Annu Power Electron Spec Conf 1999;2:632–7. https://doi.org/10.1109/PESC.1999.785575.
  • Takashima T, Tadayoshi T, Amano M, Ando Y. Maximum Output Control of Photovoltaic (PV) Array. Collect. Tech. Pap. 35th Intersoc. Energy Convers. Eng. Conf. Exhib., 2000, p. 380–3.
  • Spiazzi G, Buso S, Mattavelli P. Analysis of MPPT algorithms for photovoltaic panels based on ripple correlation techniques in presence of parasitic components. 2009 Brazilian Power Electron Conf COBEP2009 2009:88–95. https://doi.org/10.1109/COBEP.2009.5347738.
  • Al Nabulsi A, Dhaouadi R. Efficiency optimization of a dsp-based standalone PV system using fuzzy logic and dual-MPPT control. IEEE Trans Ind Informatics 2012;8:573–84. https://doi.org/10.1109/TII.2012.2192282.
  • Algazar MM, Al-Monier H, El-Halim HA, Salem MEEK. Maximum power point tracking using fuzzy logic control. Int J Electr Power Energy Syst 2012;39:21–8. https://doi.org/10.1016/j.ijepes.2011.12.006.
  • Messalti S, Harrag AG, Loukriz AE. A new neural networks MPPT controller for PV systems. 2015 6th Int. Renew. Energy Congr. IREC 2015, IEEE; 2015. https://doi.org/10.1109/IREC.2015.7110907.
  • Ocran TA, Cao J, Cao B, Sun X. Artificial neural network maximum power point tracker for solar electric vehicle. Tsinghua Sci Technol 2005;10:204–8. https://doi.org/10.1016/S1007-0214(05)70055-9.
  • Heidari M. Improving efficiency of photovoltaic system by using neural network MPPT and predictive control of converter. Int J Renew Energy Res 2016;6:1524–9.
  • Ramaprabha R, Mathur BL, Sharanya M. Solar array modeling and simulation of MPPT using neural network. 2009 Int. Conf. Control Autom. Commun. Energy Conserv. INCACEC 2009, IEEE; 2009, p. 1–5.
  • de Oliveira FM, Oliveira da Silva SA, Durand FR, Sampaio LP, Bacon VD, Campanhol LBG. Grid-tied photovoltaic system based on PSO MPPT technique with active power line conditioning. IET Power Electron 2016;9:1180–91. https://doi.org/10.1049/iet-pel.2015.0655.
  • Renaudineau H, Donatantonio F, Fontchastagner J, Petrone G, Spagnuolo G, Martin JP, et al. A PSO-based global MPPT technique for distributed PV power generation. IEEE Trans Ind Electron 2015;62:1047–58. https://doi.org/10.1109/TIE.2014.2336600.
  • Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans Syst Man, Cybern Part B Cybern 1996;26:29–41. https://doi.org/10.1109/3477.484436.
  • Dorigo M, Birattari M, Stützle T. Ant colony optimization. IEEE Comput Intell Mag 2006:28–39. https://doi.org/10.4249/scholarpedia.1461.
  • Satheesh Krishnan G, Kinattingal S, Simon SP, Nayak PSR. MPPT in PV systems using ant colony optimisation with dwindling population. IET Renew Power Gener 2020;14:1105–12. https://doi.org/10.1049/iet-rpg.2019.0875.
  • Titri S, Larbes C, Toumi KY, Benatchba K. A new MPPT controller based on the Ant colony optimization algorithm for Photovoltaic systems under partial shading conditions. Appl Soft Comput J 2017;58:465–79. https://doi.org/10.1016/j.asoc.2017.05.017.
  • Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimizer. Adv Eng Softw 2014;69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  • Eshak MM, Khafagy MA, Makeen P, Abdellatif SO. Optimizing the performance of a stand-alone PV system under non-uniform irradiance using Gray-Wolf and hybrid neural network AI-MPPT algorithms. 2nd Nov. Intell. Lead. Emerg. Sci. Conf. NILES 2020, 2020, p. 600–5. https://doi.org/10.1109/NILES50944.2020.9257965.
  • Tjahjono A, Anggriawan DO, Habibi MN, Prasetyono E. Modified grey wolf optimization for maximum power point tracking in photovoltaic system under partial shading conditions. Int J Electr Eng Informatics 2020;12:94–104. https://doi.org/10.15676/ijeei.2020.12.1.8.
  • Guo K, Cui L, Mao M, Zhou L, Zhang Q. An Improved Gray Wolf Optimizer MPPT Algorithm for PV System with BFBIC Converter under Partial Shading. IEEE Access 2020;8:103476–90. https://doi.org/10.1109/ACCESS.2020.2999311.
  • Lasheen M, Rahman AKA, Abdel-Salam M, Ookawara S. Performance Enhancement of Constant Voltage Based MPPT for Photovoltaic Applications Using Genetic Algorithm. Energy Procedia 2016;100:217–22. https://doi.org/10.1016/j.egypro.2016.10.168.
  • Huang YP, Hsu SY. A performance evaluation model of a high concentration photovoltaic module with a fractional open circuit voltage-based maximum power point tracking algorithm. Comput Electr Eng 2016;51:331–42. https://doi.org/10.1016/j.compeleceng.2016.01.009.
  • Baimel D, Tapuchi S, Levron Y, Belikov J. Improved fractional open circuit voltage MPPT methods for PV systems. Electron 2019;8:1–20. https://doi.org/10.3390/electronics8030321.
  • Sher HA, Murtaza AF, Noman A, Addoweesh KE, Chiaberge M. An intelligent control strategy of fractional short circuit current maximum power point tracking technique for photovoltaic applications. J Renew Sustain Energy 2015;7. https://doi.org/10.1063/1.4906982.
  • Ilyas A, Khan MR, Ayyub M. Lookup Table Based Modeling and Simulation of Solar Photovoltaic System. 2015 Annu. IEEE India Conf., IEEE; 2015, p. 14–9.
  • Zhang L, Wang Z, Cao P, Zhang S. A maximum power point tracking algorithm of load current maximization-perturbation and observation method with variable step size. Symmetry (Basel) 2020;12:1–16. https://doi.org/10.3390/sym12020244.
  • Lee SJ, Park HY, Kim GH, Seo HR, Ali MH, Park M, et al. The experimental analysis of the gridconnected PV system applied by POS MPPT. Proceeding Int. Conf. Electr. Mach. Syst. ICEMS 2007, 2007, p. 1786–91. https://doi.org/10.1109/ICEMS.2007.4412095.
  • Killi M, Samanta S. Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems. IEEE Trans Ind Electron 2015;62:5549–59. https://doi.org/10.1109/TIE.2015.2407854.
  • Roy CP, Naick BK, Shankar G. Modified three-point weight comparison method for adaptive MPPT of photovoltaic systems. IET Conf. Publ., vol. 2013, 2013, p. 146–56. https://doi.org/10.1049/cp.2013.2184.
  • Liu F, Kang Y, Yu Z, Duan S. Comparison of P&O and Hill Climbing MPPT Methods for Grid-Connected PV Converter. 2008 3rd IEEE Conf. Ind. Electron. Appl. ICIEA 2008, 2008, p. 804–7. https://doi.org/10.1109/ICIEA.2008.4582626.
  • Altas IH, Sharaf AM. A Novel Photovoltaic On-Line Search Algorithm for Maximum Energy Utilization. Int. Conf. Commun., Oman: Computer and Power (ICCCP’07); 2007, p. 192–7.
  • Shi Y, Liu L, Li H, Xue Y. A single-phase grid-connected PV converter with minimal DC-link capacitor and low-frequency ripple-free maximum power point tracking. 2013 IEEE Energy Convers. Congr. Expo. ECCE 2013, IEEE; 2013, p. 2385–90. https://doi.org/10.1109/ECCE.2013.6647006.
  • Tey KS, Mekhilef S. Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans Ind Electron 2014;61:5384–92. https://doi.org/10.1109/TIE.2014.2304921.
  • Hohm DP, Ropp ME. Comparative study of maximum power point tracking algorithms. Prog Photovoltaics Res Appl 2003;11:47–62. https://doi.org/10.1002/pip.459.
  • Messalti S, Harrag A, Loukriz A. A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation. Renew Sustain Energy Rev 2017;68:221–33. https://doi.org/10.1016/j.rser.2016.09.131.
  • Ishaque K, Salam Z, Amjad M, Mekhilef S. An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation. IEEE Trans Power Electron 2012;27:3627–38. https://doi.org/10.1109/TPEL.2012.2185713.
  • Jiang LL, Maskell DL, Patra JC. A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build 2013;58:227–36. https://doi.org/10.1016/j.enbuild.2012.12.001.
  • Mohanty S, Subudhi B, Ray PK. A Grey Wolf-Assisted Perturb & Observe MPPT Algorithm for a PV System. IEEE Trans Energy Convers 2017;32:340–7. https://doi.org/10.1109/TEC.2016.2633722.

A Review and Classification of Most Used MPPT Algorithms for Photovoltaic Systems

Year 2021, Volume: 8 Issue: 3, 207 - 220, 29.09.2021
https://doi.org/10.17350/HJSE19030000231

Abstract

Energy has become an indispensable need to sustain our lives. Approximately 80% of the energy consumed in the world is produced from fossil sources. For the reasons such as the depletion of fossil resources and their damages to the environment, the interest in renewable resources is increasing and the importance of solar systems, which draws attention with unlimited energy resource, is increasing day by day. The biggest disadvantages of solar systems are seen as low production efficiency and high setup cost. A PV cell can convert only 5-20% of the solar energy coming on it to electricity. Based on this, it is very important to provide the power obtained from PV with maximum efficiency and minimum cost. Accordingly, many different maximum power point tracking (MPPT) algorithms have been proposed over the years. Although the purpose of all proposed algorithms is the same, they have many advantages and disadvantages compared to each other. In this study, the most used MPPT algorithms have been examined and compared by considering many parameters such as tracking speed, stability, and cost etc. and a new classification of these algorithms is proposed.

References

  • Rabaia MKH, Abdelkareem MA, Sayed ET, Elsaid K, Chae KJ, Wilberforce T, et al. Environmental impacts of solar energy systems: A review. Sci Total Environ 2021;754:141989. https://doi.org/10.1016/j.scitotenv.2020.141989.
  • Motahhir S, El Hammoumi A, El Ghzizal A. The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm. J Clean Prod 2020;246:118983. https://doi.org/10.1016/j.jclepro.2019.118983.
  • Bahrami M, Zandi M, Gavagsaz R, Nahid-Mobarakeh B, Pierfederici S. A New Hybrid Method of MPPT for Photovoltaic Systems Based on FLC and Three Point-Weight Methods. Int. J. Adv. Sci. Technol., IEEE; 2016, p. 446–50.
  • Kumar M, Ban DK, Kim J. Photo-induced pyroelectric spikes for neuromorphic sensors. Mater Lett 2018;225:46–9. https://doi.org/10.1016/j.matlet.2018.04.106.
  • Lorenzo E. Solar electricity: engineering of photovoltaic systems. Earthscan/James & James; 1994.
  • Qi C, Ming Z. Photovoltaic Module Simulink Model for a Stand-alone PV System. Phys Procedia 2012;24:94–100. https://doi.org/10.1016/j.phpro.2012.02.015.
  • Kumar N, Hussain I, Singh B, Panigrahi BK. Framework of Maximum Power Extraction from Solar PV Panel Using Self Predictive Perturb and Observe Algorithm. IEEE Trans Sustain Energy 2018;9:895–903. https://doi.org/10.1109/TSTE.2017.2764266.
  • Motahhir S, El Hammoumi A, El Ghzizal A. Photovoltaic system with quantitative comparative between an improved MPPT and existing INC and P&O methods under fast varying of solar irradiation. Energy Reports 2018;4:341–50. https://doi.org/10.1016/j.egyr.2018.04.003.
  • Teshome DF, Lee CH, Lin YW, Lian KL. A modified firefly algorithm for photovoltaic maximum power point tracking control under partial shading. IEEE J Emerg Sel Top Power Electron 2017;5:661–71. https://doi.org/10.1109/JESTPE.2016.2581858.
  • Femia N, Petrone G, Spagnuolo G, Vitelli M. Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems. CRC Press, Taylor & Francis Group; 2017. https://doi.org/10.1201/b14303.
  • Christopher Iw, Assistant Professor S. Comparative Study of P&O and InC MPPT Algorithms. Am J Eng Res 2013;02:402–8.
  • Kota VR, Bhukya MN. A novel linear tangents based P&O scheme for MPPT of a PV system. Renew Sustain Energy Rev 2017;71:257–67. https://doi.org/10.1016/j.rser.2016.12.054.
  • Ishaque K, Salam Z, Lauss G. The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions. Appl Energy 2014;119:228–36. https://doi.org/10.1016/j.apenergy.2013.12.054.
  • Wasynczuk O. Dynamic Behavior of a Class of Photovoltaic Power Systems. IEEE Trans Power Appar Syst 1983;PAS-102:3031–7.
  • Safari A, Mekhilef S. Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE Trans Ind Electron 2011;58:1154–61. https://doi.org/10.1109/TIE.2010.2048834.
  • Elgendy MA, Zahawi B, Atkinson DJ. Assessment of the incremental conductance maximum power point tracking algorithm. IEEE Trans Sustain Energy 2013;4:108–17. https://doi.org/10.1109/TSTE.2012.2202698.
  • Tey KS, Mekhilef S. Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level. Sol Energy 2014;101:333–42. https://doi.org/10.1016/j.solener.2014.01.003.
  • Shengqing L, Fujun L, Jian Z, Wen C, Donghui Z. An improved MPPT control strategy based on incremental conductance method. Soft Comput 2020;24:6039–46. https://doi.org/10.1007/s00500-020-04723-z.
  • Algarín CR, Giraldo JT, Álvarez OR. Fuzzy logic based MPPT controller for a PV system. Energies 2017;10. https://doi.org/10.3390/en10122036.
  • Bendib B, Krim F, Belmili H, Almi MF, Bolouma S. An intelligent MPPT approach based on neural-network voltage estimator and fuzzy controller, applied to a stand-alone PV system. IEEE Int. Symp. Ind. Electron., IEEE; 2014, p. 404–9. https://doi.org/10.1109/ISIE.2014.6864647.
  • Yilmaz U, Kircay A, Borekci S. PV system fuzzy logic MPPT method and PI control as a charge controller. Renew Sustain Energy Rev 2018;81:994–1001. https://doi.org/10.1016/j.rser.2017.08.048.
  • Bollipo RB, Mikkili S, Bonthagorla PK. Critical Review on PV MPPT Techniques: Classical, Intelligent and Optimisation. IET Renew Power Gener 2020;14:1433–52. https://doi.org/10.1049/iet-rpg.2019.1163.
  • Joshi P, Arora S. Maximum power point tracking methodologies for solar PV systems – A review. Renew Sustain Energy Rev 2017;70:1154–77. https://doi.org/10.1016/j.rser.2016.12.019.
  • Bendib B, Belmili H, Krim F. A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renew Sustain Energy Rev 2015;45:637–48. https://doi.org/10.1016/j.rser.2015.02.009.
  • Karami N, Moubayed N, Outbib R. General review and classification of different MPPT Techniques. Renew Sustain Energy Rev 2017;68:1–18. https://doi.org/10.1016/j.rser.2016.09.132.
  • Asim M, Tariq M, Mallick MA, Ashraf I. An improved constant voltage based MPPT technique for PMDC motor. Int J Power Electron Drive Syst 2016;7:1330–6. https://doi.org/10.11591/ijpeds.v7i4.pp1330-1336.
  • Ahmad J. A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays. ICSTE 2010 - 2010 2nd Int. Conf. Softw. Technol. Eng. Proc., vol. 1, IEEE; 2010, p. 247–50. https://doi.org/10.1109/ICSTE.2010.5608868.
  • Enslin JHR, Wolf MS, Snyman DB, Swiegers W. Integrated photovoltaic maximum power point tracking converter. IEEE Trans Ind Electron 1997;44:769–73. https://doi.org/10.1109/41.649937.
  • Lopez-Lapeña O, Penella MT. Low-power FOCV MPPT controller with automatic adjustment of the sample&hold. Electron Lett 2012;48:1301–3. https://doi.org/10.1049/el.2012.1345.
  • Weddell AS, Merrett G V., Al-Hashimi BM. Ultra low-power photovoltaic MPPT technique for indoor and outdoor wireless sensor nodes. Proc. -Design, Autom. Test Eur. DATE, IEEE; 2011, p. 905–8. https://doi.org/10.1109/date.2011.5763302.
  • Sandali A, Oukhoya T, Cheriti A. Modeling and Design ofPV Grid Connected System Using a Modified Fractional Short-Circuit Current MPPT. 2014 Int. Renew. Sustain. Energy Conf., IEEE; 2014, p. 224–9. https://doi.org/10.1109/IRSEC.2014.7059859.
  • Masoum MAS, Dehbonei H, Fuchs EF. Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power point tracking. IEEE Trans Energy Convers 2004;19:652–3. https://doi.org/10.1109/TEC.2004.832449.
  • Sher HA, Murtaza AF, Noman A, Addoweesh KE, Al-Haddad K, Chiaberge M. A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT. IEEE Trans Sustain Energy 2015;6:1426–34. https://doi.org/10.1109/TSTE.2015.2438781.
  • Sankar M, Ramaprabha R. MODELLING AND SIMULATION OF MATLAB / SIMULINK BASED LOOKUP TABLE. ARPN J Eng Appl Sci 2013;8:948–53.
  • Kota VR, Bhukya MN. A simple and efficient MPPT scheme for PV module using 2-Dimensional lookup table. 2016 IEEE Power Energy Conf. Illinois, PECI 2016, IEEE; 2016, p. 2–8. https://doi.org/10.1109/PECI.2016.7459226.
  • Wang H, Vinayagam L, Jiang H, Cai ZQ, Ni Q, Li H. A new MPPT technique for the maximization of overall system output in solar generation. Proc Int Conf Power Electron Drive Syst 2015;2015-Augus:791–5. https://doi.org/10.1109/PEDS.2015.7203540.
  • Sanjeevikumar P, Grandi G, Wheeler PW, Blaabjerg F, Loncarski J. A simple MPPT algorithm for novel PV power generation system by high output voltage DC-DC boost converter. IEEE Int. Symp. Ind. Electron., vol. September, IEEE; 2015, p. 214–20. https://doi.org/10.1109/ISIE.2015.7281471.
  • Almutairi A, Abo-Khalil AG, Sayed K, Albagami N. MPPT for a PV grid-connected system to improve efficiency under partial shading conditions. Sustainability 2020;12:1–18. https://doi.org/10.3390/su122410310.
  • Kim SY, Park S, Jang SJ, Kim GH, Seo HR, Yu K. An effective POS MPPT control method for PV power generation system. Proc. - 12th Int. Conf. Electr. Mach. Syst. ICEMS 2009, IEEE; 2009, p. 1–6. https://doi.org/10.1109/ICEMS.2009.5382688.
  • Femia N, Petrone G, Spagnuolo G, Vitelli M. Optimization of perturb and observe maximum power point tracking method. IEEE Trans Power Electron 2005;20:963–73. https://doi.org/10.1109/TPEL.2005.850975.
  • Nedumgatt JJ, Jayakrishnan KB, Umashankar S, Vijayakumar D, Kothari DP. Perturb and observe MPPT algorithm for solar PV systems-modeling and simulation. Proc - 2011 Annu IEEE India Conf Eng Sustain Solut INDICON-2011 2011. https://doi.org/10.1109/INDCON.2011.6139513.
  • Sera D, Mathe L, Kerekes T, Spataru SV, Teodorescu R. On the perturb-and-observe and incremental conductance mppt methods for PV systems. IEEE J Photovoltaics 2013;3:1070–8. https://doi.org/10.1109/JPHOTOV.2013.2261118.
  • Femia N, Granozio D, Petrone G, Spagnuolo G, Vitelli M. Predictive & adaptive MPPT perturb and observe method. IEEE Trans Aerosp Electron Syst 2007;43:934–50. https://doi.org/10.1109/TAES.2007.4383584.
  • Piegari L, Rizzo R. Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking. IET Renew Power Gener 2010;4:317–28. https://doi.org/10.1049/iet-rpg.2009.0006.
  • Abdelsalam AK, Massoud AM, Ahmed S, Enjeti PN. High-performance adaptive Perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans Power Electron 2011;26:1010–21. https://doi.org/10.1109/TPEL.2011.2106221.
  • Bahari MI, Tarassodi P, Naeini YM, Khalilabad AK, Shirazi P. Modeling and Simulation Of Hill Climbig MPPT Algorithm For Photovoltaic Application. Int. Symp. Power Electron. Electr. Drives, Autom. Motion, IEEE; 2016, p. 1041–4.
  • Xiao W, Dunford WG. A Modified Adaptive Hill Climbing MPPT Method for Photovoltaic Power Systems. 35th Annu. IEEE Power Electron. Spec. Conf., Aachen, Germany: 2004, p. 1957–63.
  • Altas IH, Sharaf AM. A Novel On-Line MPP Search Algorithm For PV Arrays. IEEE Trans Energy Convers 1996;11:748–54.
  • Kitano T, Matsui M, Xu D hong. Power sensor-less MPPT control scheme utilizing power balance at DC link system design to ensure stability and response. IECON Proc. (Industrial Electron. Conf., vol. 2, 2001, p. 1309–14. https://doi.org/10.1109/iecon.2001.975971.
  • Shi Y, Li R, Xue Y, Li H. High-frequency-link-based grid-tied PV system with small DC-link capacitor and low-frequency ripple-free maximum power point tracking. IEEE Trans Power Electron 2016;31:328–39. https://doi.org/10.1109/TPEL.2015.2411858.
  • Mei Q, Shan M, Liu L, Guerrero JM. A novel improved variable step-size incremental-resistance MPPT method for PV systems. IEEE Trans Ind Electron 2011;58:2427–34. https://doi.org/10.1109/TIE.2010.2064275.
  • Lee JH, Bae HS, Cho BH. Advanced incremental conductance MPPT algorithm with a variable step size. EPE-PEMC 2006 12th Int. Power Electron. Motion Control Conf. Proc., 2007, p. 603–7. https://doi.org/10.1109/EPEPEMC.2006.283227.
  • Brambilla A, Gambarara M, Garutti A, Ronchi F. New approach to photovoltaic arrays maximum power point tracking. PESC Rec - IEEE Annu Power Electron Spec Conf 1999;2:632–7. https://doi.org/10.1109/PESC.1999.785575.
  • Takashima T, Tadayoshi T, Amano M, Ando Y. Maximum Output Control of Photovoltaic (PV) Array. Collect. Tech. Pap. 35th Intersoc. Energy Convers. Eng. Conf. Exhib., 2000, p. 380–3.
  • Spiazzi G, Buso S, Mattavelli P. Analysis of MPPT algorithms for photovoltaic panels based on ripple correlation techniques in presence of parasitic components. 2009 Brazilian Power Electron Conf COBEP2009 2009:88–95. https://doi.org/10.1109/COBEP.2009.5347738.
  • Al Nabulsi A, Dhaouadi R. Efficiency optimization of a dsp-based standalone PV system using fuzzy logic and dual-MPPT control. IEEE Trans Ind Informatics 2012;8:573–84. https://doi.org/10.1109/TII.2012.2192282.
  • Algazar MM, Al-Monier H, El-Halim HA, Salem MEEK. Maximum power point tracking using fuzzy logic control. Int J Electr Power Energy Syst 2012;39:21–8. https://doi.org/10.1016/j.ijepes.2011.12.006.
  • Messalti S, Harrag AG, Loukriz AE. A new neural networks MPPT controller for PV systems. 2015 6th Int. Renew. Energy Congr. IREC 2015, IEEE; 2015. https://doi.org/10.1109/IREC.2015.7110907.
  • Ocran TA, Cao J, Cao B, Sun X. Artificial neural network maximum power point tracker for solar electric vehicle. Tsinghua Sci Technol 2005;10:204–8. https://doi.org/10.1016/S1007-0214(05)70055-9.
  • Heidari M. Improving efficiency of photovoltaic system by using neural network MPPT and predictive control of converter. Int J Renew Energy Res 2016;6:1524–9.
  • Ramaprabha R, Mathur BL, Sharanya M. Solar array modeling and simulation of MPPT using neural network. 2009 Int. Conf. Control Autom. Commun. Energy Conserv. INCACEC 2009, IEEE; 2009, p. 1–5.
  • de Oliveira FM, Oliveira da Silva SA, Durand FR, Sampaio LP, Bacon VD, Campanhol LBG. Grid-tied photovoltaic system based on PSO MPPT technique with active power line conditioning. IET Power Electron 2016;9:1180–91. https://doi.org/10.1049/iet-pel.2015.0655.
  • Renaudineau H, Donatantonio F, Fontchastagner J, Petrone G, Spagnuolo G, Martin JP, et al. A PSO-based global MPPT technique for distributed PV power generation. IEEE Trans Ind Electron 2015;62:1047–58. https://doi.org/10.1109/TIE.2014.2336600.
  • Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans Syst Man, Cybern Part B Cybern 1996;26:29–41. https://doi.org/10.1109/3477.484436.
  • Dorigo M, Birattari M, Stützle T. Ant colony optimization. IEEE Comput Intell Mag 2006:28–39. https://doi.org/10.4249/scholarpedia.1461.
  • Satheesh Krishnan G, Kinattingal S, Simon SP, Nayak PSR. MPPT in PV systems using ant colony optimisation with dwindling population. IET Renew Power Gener 2020;14:1105–12. https://doi.org/10.1049/iet-rpg.2019.0875.
  • Titri S, Larbes C, Toumi KY, Benatchba K. A new MPPT controller based on the Ant colony optimization algorithm for Photovoltaic systems under partial shading conditions. Appl Soft Comput J 2017;58:465–79. https://doi.org/10.1016/j.asoc.2017.05.017.
  • Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimizer. Adv Eng Softw 2014;69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  • Eshak MM, Khafagy MA, Makeen P, Abdellatif SO. Optimizing the performance of a stand-alone PV system under non-uniform irradiance using Gray-Wolf and hybrid neural network AI-MPPT algorithms. 2nd Nov. Intell. Lead. Emerg. Sci. Conf. NILES 2020, 2020, p. 600–5. https://doi.org/10.1109/NILES50944.2020.9257965.
  • Tjahjono A, Anggriawan DO, Habibi MN, Prasetyono E. Modified grey wolf optimization for maximum power point tracking in photovoltaic system under partial shading conditions. Int J Electr Eng Informatics 2020;12:94–104. https://doi.org/10.15676/ijeei.2020.12.1.8.
  • Guo K, Cui L, Mao M, Zhou L, Zhang Q. An Improved Gray Wolf Optimizer MPPT Algorithm for PV System with BFBIC Converter under Partial Shading. IEEE Access 2020;8:103476–90. https://doi.org/10.1109/ACCESS.2020.2999311.
  • Lasheen M, Rahman AKA, Abdel-Salam M, Ookawara S. Performance Enhancement of Constant Voltage Based MPPT for Photovoltaic Applications Using Genetic Algorithm. Energy Procedia 2016;100:217–22. https://doi.org/10.1016/j.egypro.2016.10.168.
  • Huang YP, Hsu SY. A performance evaluation model of a high concentration photovoltaic module with a fractional open circuit voltage-based maximum power point tracking algorithm. Comput Electr Eng 2016;51:331–42. https://doi.org/10.1016/j.compeleceng.2016.01.009.
  • Baimel D, Tapuchi S, Levron Y, Belikov J. Improved fractional open circuit voltage MPPT methods for PV systems. Electron 2019;8:1–20. https://doi.org/10.3390/electronics8030321.
  • Sher HA, Murtaza AF, Noman A, Addoweesh KE, Chiaberge M. An intelligent control strategy of fractional short circuit current maximum power point tracking technique for photovoltaic applications. J Renew Sustain Energy 2015;7. https://doi.org/10.1063/1.4906982.
  • Ilyas A, Khan MR, Ayyub M. Lookup Table Based Modeling and Simulation of Solar Photovoltaic System. 2015 Annu. IEEE India Conf., IEEE; 2015, p. 14–9.
  • Zhang L, Wang Z, Cao P, Zhang S. A maximum power point tracking algorithm of load current maximization-perturbation and observation method with variable step size. Symmetry (Basel) 2020;12:1–16. https://doi.org/10.3390/sym12020244.
  • Lee SJ, Park HY, Kim GH, Seo HR, Ali MH, Park M, et al. The experimental analysis of the gridconnected PV system applied by POS MPPT. Proceeding Int. Conf. Electr. Mach. Syst. ICEMS 2007, 2007, p. 1786–91. https://doi.org/10.1109/ICEMS.2007.4412095.
  • Killi M, Samanta S. Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems. IEEE Trans Ind Electron 2015;62:5549–59. https://doi.org/10.1109/TIE.2015.2407854.
  • Roy CP, Naick BK, Shankar G. Modified three-point weight comparison method for adaptive MPPT of photovoltaic systems. IET Conf. Publ., vol. 2013, 2013, p. 146–56. https://doi.org/10.1049/cp.2013.2184.
  • Liu F, Kang Y, Yu Z, Duan S. Comparison of P&O and Hill Climbing MPPT Methods for Grid-Connected PV Converter. 2008 3rd IEEE Conf. Ind. Electron. Appl. ICIEA 2008, 2008, p. 804–7. https://doi.org/10.1109/ICIEA.2008.4582626.
  • Altas IH, Sharaf AM. A Novel Photovoltaic On-Line Search Algorithm for Maximum Energy Utilization. Int. Conf. Commun., Oman: Computer and Power (ICCCP’07); 2007, p. 192–7.
  • Shi Y, Liu L, Li H, Xue Y. A single-phase grid-connected PV converter with minimal DC-link capacitor and low-frequency ripple-free maximum power point tracking. 2013 IEEE Energy Convers. Congr. Expo. ECCE 2013, IEEE; 2013, p. 2385–90. https://doi.org/10.1109/ECCE.2013.6647006.
  • Tey KS, Mekhilef S. Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans Ind Electron 2014;61:5384–92. https://doi.org/10.1109/TIE.2014.2304921.
  • Hohm DP, Ropp ME. Comparative study of maximum power point tracking algorithms. Prog Photovoltaics Res Appl 2003;11:47–62. https://doi.org/10.1002/pip.459.
  • Messalti S, Harrag A, Loukriz A. A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation. Renew Sustain Energy Rev 2017;68:221–33. https://doi.org/10.1016/j.rser.2016.09.131.
  • Ishaque K, Salam Z, Amjad M, Mekhilef S. An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation. IEEE Trans Power Electron 2012;27:3627–38. https://doi.org/10.1109/TPEL.2012.2185713.
  • Jiang LL, Maskell DL, Patra JC. A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build 2013;58:227–36. https://doi.org/10.1016/j.enbuild.2012.12.001.
  • Mohanty S, Subudhi B, Ray PK. A Grey Wolf-Assisted Perturb & Observe MPPT Algorithm for a PV System. IEEE Trans Energy Convers 2017;32:340–7. https://doi.org/10.1109/TEC.2016.2633722.
There are 89 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Ömer Faruk Tozlu 0000-0002-3245-6550

Hüseyin Çalık 0000-0001-8298-8945

Publication Date September 29, 2021
Submission Date March 1, 2021
Published in Issue Year 2021 Volume: 8 Issue: 3

Cite

Vancouver Tozlu ÖF, Çalık H. A Review and Classification of Most Used MPPT Algorithms for Photovoltaic Systems. Hittite J Sci Eng. 2021;8(3):207-20.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).