Research Article
BibTex RIS Cite

Performance Analysis of Fresnel Lens Driven Hot Water/Steam Generator for Domestic and Industrial Use: A CFD Research

Year 2023, Volume: 10 Issue: 1, 1 - 9, 31.03.2023
https://doi.org/10.17350/HJSE19030000285

Abstract

In this study, the design, manufacture and thermal performance analysis of a Fresnel lens driven hot water/steam generator are presented. The designed system is suitable for domestic and industrial hot water/steam usage and can be easily scaled up to meet different capacity needs. In the first step of the research, thermal behaviour of the cast plate heat exchanger driven by a Fresnel lens with a concentration ratio of 100 is investigated at different working fluid velocities (0.6, 0.8, 1.0, 1.5 and 2.0 m/s) and at different absorber surface temperatures (700, 800, 900 and 1000 °C). Outlet temperature of working fluid from the cast plate heat exchanger is determined through a 3D CFD model for each case. The capacity of the steam generator for different operating times (h = 1, 2 and 3 hours) is also evaluated. The highest working fluid temperature at the outlet of heat exchanger is 914.8 °C for T_cp= 1000 °C and V_wf = 0.6 m/s. On the other hand, the lowest temperature is observed as 424.7 °C for T_cp = 700 °C and V_wf = 2.0 m/s. The steam capacity of the system for h = 3 hours is determined as 1696.5 and 508.9 kg in the best (V_wf = 2.0 m/s) and worst cases (V_wf = 0.6 m/s), respectively.

Supporting Institution

Turkish Academy of Sciences (TÜBA)

Thanks

Erdem Cuce is grateful to Turkish Academy of Sciences (TÜBA) for their financial support to this research.

References

  • Verma S, Verma A, Kumar V, Gangil B. Concentrated photovoltaic thermal systems using Fresnel lenses-A review. Mater Today Proc 2020;44:4256–60. doi:10.1016/j.matpr.2020.10.542.
  • Bellos E, Skaltsas I, Pliakos O, Tzivanidis C. Energy and financial investigation of a cogeneration system based on linear Fresnel reflectors. Energy Convers Manag 2019;198. doi:10.1016/j.enconman.2019.111821.
  • Bellos E, Tzivanidis C. Alternative designs of parabolic trough solar collectors. Prog Energy Combust Sci 2019;71:81–117.doi:10.1016/j.pecs.2018.11.001.
  • Bellos E. Progress in the design and the applications of linear Fresnel reflectors – A critical review. Therm Sci Eng Prog 2019;10:112–37. doi:10.1016/j.tsep.2019.01.014.
  • Zhai H, Dai YJ, Wu JY, Wang RZ, Zhang LY. Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens. Energy Convers Manag 2010;51:48–55.doi:10.1016/j.enconman.2009.08.018.
  • Perini S, Tonnellier X, King P, Sansom C. Theoretical and experimental analysis of an innovative dual-axis tracking linear Fresnel lenses concentrated solar thermal collector. Sol Energy 2017;153:679–90. doi:10.1016/j.solener.2017.06.010.
  • Ma X, Zheng H, Tian M. Optimize the shape of curved-Fresnel lens to maximize its transmittance. Sol Energy 2016;127:285–9 doi:10.1016/j.solener.2016.01.014.
  • Lin M, Sumathy K, Dai YJ, Zhao XK. Performance investigation on a linear Fresnel lens solar collector using cavity receiver. Sol Energy 2014;107:50–62. doi:10.1016/j.solener.2014.05.026.
  • Xie WT, Dai YJ, Wang RZ. Thermal performance analysis of a line-focus Fresnel lens solar collector using different cavity receivers. Sol Energy 2013;91:242–55. doi:10.1016/j.solener.2013.01.029.
  • Wu G, Zheng H, Ma X, Kutlu C, Su Y. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator. Energy Convers Manag 2017;143:241–51. doi:10.1016/j.enconman.2017.04.011.
  • Beltagy H, Semmar D, Lehaut C, Said N. Theoretical and experimental performance analysis of a Fresnel type solar concentrator. Renew Energy 2017;101:782–93. doi:10.1016/j.renene.2016.09.038.
  • Asrori A, Suparman S, Wahyudi S, Widhiyanuriyawan D. Investigation of Steam Generation Performance on Conical Cavity Receiver By Different Geometric Concentration Ratios for Fresnel Lens Solar Concentrator. Eastern-European J Enterp Technol 2020;4:6–14. doi:10.15587/1729-4061.2020.209778.
  • Sanchez Vega LR. Modeling and experimental evaluation of a small-scale fresnel solar concentrator system. Renewables Wind Water, Sol 2016;3. doi:10.1186/s40807-016-0021-9.
  • Zulkifle I, Ruslan MHH, Othman MYH, Ibarahim Z. Analytical analysis of solar thermal collector with glass and Fresnel lens glazing. AIP Conf Proc 2018;1940. doi:10.1063/1.5027920.
  • Ma X, Zheng H, Liu S. Optimization on a cylindrical Fresnel lens and its validation in a medium-temperature solar steam generation system. Renew Energy 2019; 134:1332–43. doi:10.1016/j.renene.2018.08.075.
  • ANSYS FLUENT. Fluid Simulation Software.
  • Cengel, Y. A., & Ghajar, A. J. (2014). Heat and mass transfer: Fundamentals and applications (5th ed.). McGraw-Hill Professional.
  • Arslan, M. Igci, A. Thermal performance of a vertical solar hot water storage tank with a mantle heat exchanger depending on the discharging operation parameters. Solar Energy, 2015;116;184-204.
Year 2023, Volume: 10 Issue: 1, 1 - 9, 31.03.2023
https://doi.org/10.17350/HJSE19030000285

Abstract

References

  • Verma S, Verma A, Kumar V, Gangil B. Concentrated photovoltaic thermal systems using Fresnel lenses-A review. Mater Today Proc 2020;44:4256–60. doi:10.1016/j.matpr.2020.10.542.
  • Bellos E, Skaltsas I, Pliakos O, Tzivanidis C. Energy and financial investigation of a cogeneration system based on linear Fresnel reflectors. Energy Convers Manag 2019;198. doi:10.1016/j.enconman.2019.111821.
  • Bellos E, Tzivanidis C. Alternative designs of parabolic trough solar collectors. Prog Energy Combust Sci 2019;71:81–117.doi:10.1016/j.pecs.2018.11.001.
  • Bellos E. Progress in the design and the applications of linear Fresnel reflectors – A critical review. Therm Sci Eng Prog 2019;10:112–37. doi:10.1016/j.tsep.2019.01.014.
  • Zhai H, Dai YJ, Wu JY, Wang RZ, Zhang LY. Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens. Energy Convers Manag 2010;51:48–55.doi:10.1016/j.enconman.2009.08.018.
  • Perini S, Tonnellier X, King P, Sansom C. Theoretical and experimental analysis of an innovative dual-axis tracking linear Fresnel lenses concentrated solar thermal collector. Sol Energy 2017;153:679–90. doi:10.1016/j.solener.2017.06.010.
  • Ma X, Zheng H, Tian M. Optimize the shape of curved-Fresnel lens to maximize its transmittance. Sol Energy 2016;127:285–9 doi:10.1016/j.solener.2016.01.014.
  • Lin M, Sumathy K, Dai YJ, Zhao XK. Performance investigation on a linear Fresnel lens solar collector using cavity receiver. Sol Energy 2014;107:50–62. doi:10.1016/j.solener.2014.05.026.
  • Xie WT, Dai YJ, Wang RZ. Thermal performance analysis of a line-focus Fresnel lens solar collector using different cavity receivers. Sol Energy 2013;91:242–55. doi:10.1016/j.solener.2013.01.029.
  • Wu G, Zheng H, Ma X, Kutlu C, Su Y. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator. Energy Convers Manag 2017;143:241–51. doi:10.1016/j.enconman.2017.04.011.
  • Beltagy H, Semmar D, Lehaut C, Said N. Theoretical and experimental performance analysis of a Fresnel type solar concentrator. Renew Energy 2017;101:782–93. doi:10.1016/j.renene.2016.09.038.
  • Asrori A, Suparman S, Wahyudi S, Widhiyanuriyawan D. Investigation of Steam Generation Performance on Conical Cavity Receiver By Different Geometric Concentration Ratios for Fresnel Lens Solar Concentrator. Eastern-European J Enterp Technol 2020;4:6–14. doi:10.15587/1729-4061.2020.209778.
  • Sanchez Vega LR. Modeling and experimental evaluation of a small-scale fresnel solar concentrator system. Renewables Wind Water, Sol 2016;3. doi:10.1186/s40807-016-0021-9.
  • Zulkifle I, Ruslan MHH, Othman MYH, Ibarahim Z. Analytical analysis of solar thermal collector with glass and Fresnel lens glazing. AIP Conf Proc 2018;1940. doi:10.1063/1.5027920.
  • Ma X, Zheng H, Liu S. Optimization on a cylindrical Fresnel lens and its validation in a medium-temperature solar steam generation system. Renew Energy 2019; 134:1332–43. doi:10.1016/j.renene.2018.08.075.
  • ANSYS FLUENT. Fluid Simulation Software.
  • Cengel, Y. A., & Ghajar, A. J. (2014). Heat and mass transfer: Fundamentals and applications (5th ed.). McGraw-Hill Professional.
  • Arslan, M. Igci, A. Thermal performance of a vertical solar hot water storage tank with a mantle heat exchanger depending on the discharging operation parameters. Solar Energy, 2015;116;184-204.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Pinar Mert Cuce 0000-0002-6522-7092

Erdem Cuce 0000-0003-0150-4705

Publication Date March 31, 2023
Submission Date March 23, 2022
Published in Issue Year 2023 Volume: 10 Issue: 1

Cite

Vancouver Cuce PM, Cuce E. Performance Analysis of Fresnel Lens Driven Hot Water/Steam Generator for Domestic and Industrial Use: A CFD Research. Hittite J Sci Eng. 2023;10(1):1-9.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).