In this study, theoretic analyses were executed on the optimized geometric structure of 3-(6-(3-aminophenyl)thiazolo[3,2-b][1.2.4]triazol-2-yl)-2H-chromen-2-one (ATTC). The basis sets for these theoretical research were B3LYP/DGDZVP and B3LYP/6-311G(d,p). To determine the stability and molecular reactiveness of the molecule, energy range, the HOMO-LUMO energies, softhood (s), hardhood (η), electronic negativity (χ), and chemical potential (μ) characteristics were employed. The second array decay energy E(2) values of the molecule, which indicates the ATTC molecule’s the bioactivite, were determined with the native bond orbital (NBO) analysis. The ATTC molecule’s the reactive behavior is further studied using simulated the molecular electrostatic potential (MEP) surface’s calculations. The overall electron intensity and mulliken atomic charge distribution found by MEP area research gave proof that the molecule's reactive area existed. The ATTC molecule will continue to be a crucial therapeutic agent to Alzheimer disease’s the treatment Alzheimer disease thanks to molecular docking study. The highest binding affinity was observed as a docking score of -10,681 Kcal/mol.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Research Articles |
Authors | |
Publication Date | March 31, 2023 |
Submission Date | September 4, 2022 |
Published in Issue | Year 2023 Volume: 10 Issue: 1 |
Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).