Research Article
BibTex RIS Cite

Cobalt Boride (Co2B) Particle Synthesis by One-step Carbothermic Reduction

Year 2023, Volume: 10 Issue: 3, 229 - 235, 30.09.2023
https://doi.org/10.17350/HJSE19030000311

Abstract

In this study, crystalline Co2B powder production was carried out by a one-step carbothermal reduction method starting from cheap, easily accessible oxide-based materials. Firstly, to determine the carbothermic CoxB formation conditions, the decomposition temperatures of the raw materials were analysed by TG/DTA, and the temperature-varying Gibbs free energies of the expected reactions were calculated. Then, Co2B production was carried out at constant CoO/B2O3/C (3.22/1.5/1.3) weight ratios at temperature (1273-1473 K) and time (30-270 min). scanning electron microscopy (SEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM) were used to characterize the particles. XRD results showed that reaction temperature and time are the primary control on CoxB formation. Single-phase crystalline Co2B particles with crystallite sizes of 88 nm were successfully produced at 1473 K and 150 min. The permanent magnetization, saturation magnetization, and coercivity values of Co2B particles were defined as 16.58 Oe, 35.361 emu/g, 0.501 emu/g, respectively

References

  • 1. Fisher KG. Cobalt Processing Developments, in: The Southern African Institute of Mining and Metallurgy. Paper presented at 6th South African Base Metals Conference, Marshalltown, 21-22 July, SAIMM, Rosebank, pp. 237–258, 2011.
  • 2. Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG. Cobalt – Occurrence, Production, Use and Price, in: Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG (Eds.) Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, Amsterdam, pp. 357–63, 2011
  • 3. Mégret A, Vitry V, Delaunois F. Study of the processing of a recycled WC–Co powder: can it compete with conventional WC–Co powders Journal of Sustainable Metallurgy 7 (2021) 448–458.
  • 4. Roberts S, Gunn G. Cobalt, in: Gunn G. (Eds). Critical metals handbook, Wiley, New York, pp. 122–49, 2013.
  • 5. Campos-Silva I, Franco-Raudales O, Meda-Campaña JA, Espino- Cortés FP, Acosta-Pavón JC. Growth kinetics of CoB-Co2B layers using the powder-pack boriding process assisted by a direct current field. High Temperature Materials and Processes 38 (2019) 158–67.
  • 6. Çalik A, Karakas MS, Ucar N, Ünüvar F. Boriding kinetics of pure cobalt. Kovove Materialy 52 (2014) 107–12.
  • 7. Rodríguez-Castro GA, Reséndiz-Calderon CD, Jiménez- Tinoco LF, Meneses-Amador A, Gallardo-Hernández EA, Campos- Silva IE. Micro-abrasive wear resistance of CoB/Co2B coatings formed in CoCrMo alloy. Surface and Coatings Technology 284 (2015) 258–63.
  • 8. Lv J, Wang Q, Zhao J, Liu W, Chen P, Liu H. The difference in the improvement of electrochemical hydrogen storage performance between two methods of coating copper on the surface of Co2B alloy. Chemical Physics Letters 754 (2020) 137697.
  • 9. Altıntaş Z, Khoshsima S, Schmidt M, Bobnar M, Burkhardt U, Somer M, et al. Evolution of magnetic properties of crystalline co-ibraolnt boride nanoparticles via optimization of synthesis conditions using hydrous metal chlorides. Journal of Magnetism and Magnetic Materials 523 (2021) 1–8.
  • 10. Oh JH, Kim M, Lee YH, Hong SH, Park SS, Kim TH, et al. Synthesis of cobalt boride nanoparticles and h-BN nanocage encapsulation by thermal plasma. Ceramics International 46 (2020) 28792–9.
  • 11. Lv J, Wang Q, Chen P, Liu H, Su Z, Zhao J, et al. Effect of ball-milling time and Pd addition on electrochemical hydrogen storage performance of Co2B alloy. Solid State Sciences 103 (2020) 106184.
  • 12. Niu X, Wang X, Guan K, Wei Q, Liu H. Preparation, and electrochemical hydrogen storage application of mesoporous carbon CMK-3 coated Co2B alloy composite. Chemical Physics Letters 778 (2021) 138762.
  • 13. Ghafar FA, Etherton D, Liu S, Buckley CE, English NJ, Silvester DS, et al. Tuning the catalytic activity of bifunctional cobalt boride nanoflakes for overall water splitting over a wide pH range. Journal of The Electrochemical Society 169 (2022) 096507.
  • 14. Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, et al. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Advanced Energy Materials 6 (2016) 1502313.
  • 15. Simsek , T Barış M. Synthesis of Co2B nanostructures and their catalytic properties for hydrogen generation. Journal of Boron 2(1) (2017) 28–36.
  • 16. Kartal L. Synthesis of cobalt boride particles by molten salt assisted calciothermic reduction. Transactions of the Indian Institute of Metals 76(3) (2022) 757–764.
  • 17. Kartal L. Single Fe2B Phase Particle Production by Calciothermic Reduction in Molten Salt. Hittite Journal of Science and Engineering 9(2)(2022) 145–50.
  • 18. Kartal L. Single step calciothermic synthesis of nickel boride particles in molten salt. Journal of the Australian Ceramic Society (2023) https:// doi.org/10.1007/s41779-023-00893-9.
  • 19. Sharifi H, Rabiei Faradonbeh S, Tayebi M. Production, and characterization of cobalt/vanadium boride nanocomposite powder by mechanochemical method. Materials Chemistry and Physics 202 (2017) 251–257.
  • 20. Wu C, Bai Y, Wang X, Wu F, Zhang C. Comparisons of Co-B alloys synthesized via different methods for secondary alkaline batteries. Solid State Ionics 179 (2008) 924–927.
  • 21. Doñu-Ruiz MA, López-Perrusquia N, Renteria-Salcedo A, Flores-Martinez M, Rodriguez-De Anda E, Muhl S, et al. Tribocorrosion behavior of boride coating on CoCrMo alloy produced by thermochemical process in 0.35% NaCl solution. Surface and Coatings Technology 425 (2021) 127698.
  • 22. Simsek T , Barış M, Akkurt A. Co2B nanopartikülleri ile kaplanmış S235JRC karbon çelik malzemelerin farklı kesme yöntemleri ile işlenebilirlik özelliklerinin araştırılması. Journal of Polytechnic 22(1) (2019) 169–177.
  • 23. Khoshsima S, Altıntaş Z, Burkhardt U, Schmidt M, Prashanth KG, Somer M, et al. CToiBB2- crystalline powders: Synthesis, microstructural analysis and their utilization as reinforcement agent. Advanced Powder Technology 31 (202906) 4–22972.
  • 24. Altıntaş Z, Khoshima S, Somer M, Balcı Ö. The synthesis of binary and ternary coba-lbt ased metal borides by inorganic molten salt technique. Journal Boron 5(1) (2020) 12–22.
  • 25. Yolcular S, Karaoglu S. Hydrogen generation from sodium borohydride with cobalt boride catalysts. ALKU Fen Bilim Dergisi 2(2) (2020) 84–96.
  • 26. Yılmaz D, Savacı U, Koç N, Turan S. Investigation of Boro/ carbothermic and carbothermic reduction synthesized calcium hexaborides. Journal of Boron 3(2) (2018) 103–108.
  • 27. Balcı, Özge AD. Borür-Karbür esaslı kompozit tozların öşütme destekli karbotermik redüksiyon yöntemi ile ekonomik yoldan üretimi. Metalurji 178 (2016) 40–44.
  • 28. Verma PC, Mishra SK. Synthesis of iron boride powder by carbothermic reduction method. Materials Today: Proceedings 28 (2019) 902–906.
  • 29. Yucel O, Addemir O, Tekin A. The optimization of parameters for the carbothermic production of ferroboron. Paper presented at proceedings of the 6th international ferroalloys congress, Cape Town, pp. 285–289, 1992.
  • 30. Ross JRH. Catalyst Characterization in: Ross JRH (Eds) Contemporary Catalysis fundamentals and current applications, Elsevier, Amsterdam, pp.121–132, 2019.
  • 31. Faria MIST, Leonardi T, Coelho GC, Nunes CA, Avillez RR. Microstructural characterization of as-cast Co-B alloys. Materials Characterization 58 (2007) 358–62.
  • 32. Petit C, Pileni MP. Nanosize cobalt boride particles: Control of the size and properties. Journal of Magnetism and Magnetic Materials 166 (1997) 82–90.
  • 33. Baris M, Simsek T, Akkurt A. Mechanochemical synthesis and characterization of pure Co2B nanocrystals. Bulletin of Materials Science 39(4) (2016) 1119–1126.
Year 2023, Volume: 10 Issue: 3, 229 - 235, 30.09.2023
https://doi.org/10.17350/HJSE19030000311

Abstract

References

  • 1. Fisher KG. Cobalt Processing Developments, in: The Southern African Institute of Mining and Metallurgy. Paper presented at 6th South African Base Metals Conference, Marshalltown, 21-22 July, SAIMM, Rosebank, pp. 237–258, 2011.
  • 2. Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG. Cobalt – Occurrence, Production, Use and Price, in: Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG (Eds.) Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, Amsterdam, pp. 357–63, 2011
  • 3. Mégret A, Vitry V, Delaunois F. Study of the processing of a recycled WC–Co powder: can it compete with conventional WC–Co powders Journal of Sustainable Metallurgy 7 (2021) 448–458.
  • 4. Roberts S, Gunn G. Cobalt, in: Gunn G. (Eds). Critical metals handbook, Wiley, New York, pp. 122–49, 2013.
  • 5. Campos-Silva I, Franco-Raudales O, Meda-Campaña JA, Espino- Cortés FP, Acosta-Pavón JC. Growth kinetics of CoB-Co2B layers using the powder-pack boriding process assisted by a direct current field. High Temperature Materials and Processes 38 (2019) 158–67.
  • 6. Çalik A, Karakas MS, Ucar N, Ünüvar F. Boriding kinetics of pure cobalt. Kovove Materialy 52 (2014) 107–12.
  • 7. Rodríguez-Castro GA, Reséndiz-Calderon CD, Jiménez- Tinoco LF, Meneses-Amador A, Gallardo-Hernández EA, Campos- Silva IE. Micro-abrasive wear resistance of CoB/Co2B coatings formed in CoCrMo alloy. Surface and Coatings Technology 284 (2015) 258–63.
  • 8. Lv J, Wang Q, Zhao J, Liu W, Chen P, Liu H. The difference in the improvement of electrochemical hydrogen storage performance between two methods of coating copper on the surface of Co2B alloy. Chemical Physics Letters 754 (2020) 137697.
  • 9. Altıntaş Z, Khoshsima S, Schmidt M, Bobnar M, Burkhardt U, Somer M, et al. Evolution of magnetic properties of crystalline co-ibraolnt boride nanoparticles via optimization of synthesis conditions using hydrous metal chlorides. Journal of Magnetism and Magnetic Materials 523 (2021) 1–8.
  • 10. Oh JH, Kim M, Lee YH, Hong SH, Park SS, Kim TH, et al. Synthesis of cobalt boride nanoparticles and h-BN nanocage encapsulation by thermal plasma. Ceramics International 46 (2020) 28792–9.
  • 11. Lv J, Wang Q, Chen P, Liu H, Su Z, Zhao J, et al. Effect of ball-milling time and Pd addition on electrochemical hydrogen storage performance of Co2B alloy. Solid State Sciences 103 (2020) 106184.
  • 12. Niu X, Wang X, Guan K, Wei Q, Liu H. Preparation, and electrochemical hydrogen storage application of mesoporous carbon CMK-3 coated Co2B alloy composite. Chemical Physics Letters 778 (2021) 138762.
  • 13. Ghafar FA, Etherton D, Liu S, Buckley CE, English NJ, Silvester DS, et al. Tuning the catalytic activity of bifunctional cobalt boride nanoflakes for overall water splitting over a wide pH range. Journal of The Electrochemical Society 169 (2022) 096507.
  • 14. Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, et al. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Advanced Energy Materials 6 (2016) 1502313.
  • 15. Simsek , T Barış M. Synthesis of Co2B nanostructures and their catalytic properties for hydrogen generation. Journal of Boron 2(1) (2017) 28–36.
  • 16. Kartal L. Synthesis of cobalt boride particles by molten salt assisted calciothermic reduction. Transactions of the Indian Institute of Metals 76(3) (2022) 757–764.
  • 17. Kartal L. Single Fe2B Phase Particle Production by Calciothermic Reduction in Molten Salt. Hittite Journal of Science and Engineering 9(2)(2022) 145–50.
  • 18. Kartal L. Single step calciothermic synthesis of nickel boride particles in molten salt. Journal of the Australian Ceramic Society (2023) https:// doi.org/10.1007/s41779-023-00893-9.
  • 19. Sharifi H, Rabiei Faradonbeh S, Tayebi M. Production, and characterization of cobalt/vanadium boride nanocomposite powder by mechanochemical method. Materials Chemistry and Physics 202 (2017) 251–257.
  • 20. Wu C, Bai Y, Wang X, Wu F, Zhang C. Comparisons of Co-B alloys synthesized via different methods for secondary alkaline batteries. Solid State Ionics 179 (2008) 924–927.
  • 21. Doñu-Ruiz MA, López-Perrusquia N, Renteria-Salcedo A, Flores-Martinez M, Rodriguez-De Anda E, Muhl S, et al. Tribocorrosion behavior of boride coating on CoCrMo alloy produced by thermochemical process in 0.35% NaCl solution. Surface and Coatings Technology 425 (2021) 127698.
  • 22. Simsek T , Barış M, Akkurt A. Co2B nanopartikülleri ile kaplanmış S235JRC karbon çelik malzemelerin farklı kesme yöntemleri ile işlenebilirlik özelliklerinin araştırılması. Journal of Polytechnic 22(1) (2019) 169–177.
  • 23. Khoshsima S, Altıntaş Z, Burkhardt U, Schmidt M, Prashanth KG, Somer M, et al. CToiBB2- crystalline powders: Synthesis, microstructural analysis and their utilization as reinforcement agent. Advanced Powder Technology 31 (202906) 4–22972.
  • 24. Altıntaş Z, Khoshima S, Somer M, Balcı Ö. The synthesis of binary and ternary coba-lbt ased metal borides by inorganic molten salt technique. Journal Boron 5(1) (2020) 12–22.
  • 25. Yolcular S, Karaoglu S. Hydrogen generation from sodium borohydride with cobalt boride catalysts. ALKU Fen Bilim Dergisi 2(2) (2020) 84–96.
  • 26. Yılmaz D, Savacı U, Koç N, Turan S. Investigation of Boro/ carbothermic and carbothermic reduction synthesized calcium hexaborides. Journal of Boron 3(2) (2018) 103–108.
  • 27. Balcı, Özge AD. Borür-Karbür esaslı kompozit tozların öşütme destekli karbotermik redüksiyon yöntemi ile ekonomik yoldan üretimi. Metalurji 178 (2016) 40–44.
  • 28. Verma PC, Mishra SK. Synthesis of iron boride powder by carbothermic reduction method. Materials Today: Proceedings 28 (2019) 902–906.
  • 29. Yucel O, Addemir O, Tekin A. The optimization of parameters for the carbothermic production of ferroboron. Paper presented at proceedings of the 6th international ferroalloys congress, Cape Town, pp. 285–289, 1992.
  • 30. Ross JRH. Catalyst Characterization in: Ross JRH (Eds) Contemporary Catalysis fundamentals and current applications, Elsevier, Amsterdam, pp.121–132, 2019.
  • 31. Faria MIST, Leonardi T, Coelho GC, Nunes CA, Avillez RR. Microstructural characterization of as-cast Co-B alloys. Materials Characterization 58 (2007) 358–62.
  • 32. Petit C, Pileni MP. Nanosize cobalt boride particles: Control of the size and properties. Journal of Magnetism and Magnetic Materials 166 (1997) 82–90.
  • 33. Baris M, Simsek T, Akkurt A. Mechanochemical synthesis and characterization of pure Co2B nanocrystals. Bulletin of Materials Science 39(4) (2016) 1119–1126.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering, Materials Engineering (Other)
Journal Section Research Articles
Authors

Levent Kartal 0000-0002-6291-8947

Publication Date September 30, 2023
Submission Date March 31, 2023
Published in Issue Year 2023 Volume: 10 Issue: 3

Cite

Vancouver Kartal L. Cobalt Boride (Co2B) Particle Synthesis by One-step Carbothermic Reduction. Hittite J Sci Eng. 2023;10(3):229-35.

Cited By

Magnetic Properties of Borided Co-Cr-Mo Alloy
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi
https://doi.org/10.18185/erzifbed.1485790

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).