Experimentally Performance Evaluation of a Dual Evaporator Ejector Refrigeration System with Diffuser Outlet Split Configuration under Varied Compressor Inlet Pressures
Year 2024,
Volume: 11 Issue: 2, 49 - 56, 30.06.2024
Gizem Çetin
,
Ümit İşkan
,
Mehmet Direk
,
Mahmut Cüneyt Kahraman
,
Cüneyt Tunçkal
Abstract
In this research, an experimental investigation was conducted on a dual-evaporator ejector system (DEES). The experiments were conducted under two distinct configurations, known as condenser outlet split (COS) and diffuser outlet split (DOS), across varying compressor inlet pres-sures. The system was initially operated in accordance with the COS configuration followed by operation under the DOS configuration. The comparison revealed a 9% reduction in the compressor work within the DOS configuration relative to the COS configuration. Evaporator#2 cooling capacity was 14% higher in the DOS compared to the COS. Moreover, the total cooling capacity achieved in the COS mode exhibited a 16% increase in comparison to the DOS mode. Furthermore, research findings indicate that by operating the DEES in the DOS configuration, full refrigerant separation can be achieved, leading to enhanced operational efficiency.
Supporting Institution
Yalova Üniversitesi
Project Number
Project no: 2022/AP/0010 and 2023/YL/0002
Thanks
We are grateful to Yalova University due to financial support (Project no: 2022/AP/0010 and 2023/YL/0002)
References
- 1. Ünal Ş, Cihan E, Erdinç MT, Bilgili M. Influence of mixing section inlet and diffuser outlet velocities on the performance of ejector-expansion refrigeration system using zeotropic mixture. Therm Sci Eng Prog. 2022 Aug 1;33:101338.
- 2. Kim S, Jeon Y, Chung HJ, Kim Y. Performance optimization of an R410A air-conditioner with a dual evaporator ejector cycle based on cooling seasonal performance factor. Appl Therm Eng. 2018 Feb 25;131:988–97.
- 3. Üğüdür B, İşkan Ü, Direk M. Performance analysis of dual-evaporator ejector refrigeration system in different configurations: Experimental investigation. Int J Energy Stud. 2023 Sep 22;8(3):315–30.
- 4. Jain V, Khurana S, Parinam A, Sachdeva G, Goel A, Mudgil K. Experimental analysis of an ejector assisted dual-evaporator vapor compression system. Energy Convers Manag. 2024 Jan 15;300:117966.
- 5. Liang Y, Ye K, Zhu Y, Lu J. Thermodynamic analysis of two-stage and dual-temperature ejector refrigeration cycles driven by the waste heat of exhaust gas. Energy. 2023 Sep 1;278:127862.
- 6. Fan C, Yan G, Yu J. Thermodynamic analysis of a modified solar assisted ejector-compression heat pump cycle with zeotropic mixture R290/R600a. Appl Therm Eng. 2019 Mar 5;150:42–9.
- 7. Śmierciew K, Dudar A, Butrymowicz D, Gagan J, Jakończuk P, Zou H. Experimental Assessment of the Efficiency of Two-Phase Ejector Components for Isobutane. Sustainability. 2022 Jan;14(20):13356.
- 8. Tahir Erdinc M, Kutlu C, Unal S, Aydin O, Su Y, Riffat S. Performance improvement potential of a PV/T integrated dual-source heat pump unit with a pressure booster ejector. Therm Sci Eng Prog. 2023 Jan 1;37:101534.
- 9. Caliskan O, Ersoy HK. Energy analysis and performance comparison of transcritical CO2 supermarket refrigeration cycles. J Supercrit Fluids. 2022 Oct 1;189:105698.
- 10. İşkan Ü, Kahraman MC, Direk M. Comparison of R134a and R516A’s Performance at Different Air Velocities in Two Evaporator Ejector Cooling System. Hittite J Sci Eng. 2023 Mar 31;10(1):69–76.
- 11. Fingas R, Haida M, Smolka J, Besagni G, Bodys J, Palacz M, et al. Experimental analysis of the air-to-water ejector-based R290 heat pump system for domestic application. Appl Therm Eng. 2024 Jan 10;236:121800.
- 12. Ünal Ş, Erdinç MT, Akgün H, Bilgili M. Effects of alternative refrigerants on the ejector dimensions for single and dual ejectors enhanced bus air conditioning system. Int Commun Heat Mass Transf. 2023 Apr 1;143:106685.
- 13. Lawrence N, Elbel S. Experimental and Analytical Investigation of Automotive Ejector Air-Conditioning Cycles Using Low-Pressure Refrigerants. Int Refrig Air Cond Conf [Internet]. 2012 Jan 1; Available from: https://docs.lib.purdue.edu/iracc/1169
- 14. Direk M, İşkan Ü, Tunçkal C, Mert MS, Yüksel F. An experimental investigation of ejector employed a dual-evaporator vapor compression refrigeration system under various entrainment ratios using R134a as the refrigerant. Sustain Energy Technol Assess. 2022 Aug 1;52:102293.
- 15. İşkan Ü, Direk M. Experimental performance evaluation of the dual-evaporator ejector refrigeration system using environmentally friendly refrigerants of R1234ze(E), ND, R515a, R456a, and R516a as a replacement for R134a. J Clean Prod. 2022 Jun 10;352:131612.
Year 2024,
Volume: 11 Issue: 2, 49 - 56, 30.06.2024
Gizem Çetin
,
Ümit İşkan
,
Mehmet Direk
,
Mahmut Cüneyt Kahraman
,
Cüneyt Tunçkal
Project Number
Project no: 2022/AP/0010 and 2023/YL/0002
References
- 1. Ünal Ş, Cihan E, Erdinç MT, Bilgili M. Influence of mixing section inlet and diffuser outlet velocities on the performance of ejector-expansion refrigeration system using zeotropic mixture. Therm Sci Eng Prog. 2022 Aug 1;33:101338.
- 2. Kim S, Jeon Y, Chung HJ, Kim Y. Performance optimization of an R410A air-conditioner with a dual evaporator ejector cycle based on cooling seasonal performance factor. Appl Therm Eng. 2018 Feb 25;131:988–97.
- 3. Üğüdür B, İşkan Ü, Direk M. Performance analysis of dual-evaporator ejector refrigeration system in different configurations: Experimental investigation. Int J Energy Stud. 2023 Sep 22;8(3):315–30.
- 4. Jain V, Khurana S, Parinam A, Sachdeva G, Goel A, Mudgil K. Experimental analysis of an ejector assisted dual-evaporator vapor compression system. Energy Convers Manag. 2024 Jan 15;300:117966.
- 5. Liang Y, Ye K, Zhu Y, Lu J. Thermodynamic analysis of two-stage and dual-temperature ejector refrigeration cycles driven by the waste heat of exhaust gas. Energy. 2023 Sep 1;278:127862.
- 6. Fan C, Yan G, Yu J. Thermodynamic analysis of a modified solar assisted ejector-compression heat pump cycle with zeotropic mixture R290/R600a. Appl Therm Eng. 2019 Mar 5;150:42–9.
- 7. Śmierciew K, Dudar A, Butrymowicz D, Gagan J, Jakończuk P, Zou H. Experimental Assessment of the Efficiency of Two-Phase Ejector Components for Isobutane. Sustainability. 2022 Jan;14(20):13356.
- 8. Tahir Erdinc M, Kutlu C, Unal S, Aydin O, Su Y, Riffat S. Performance improvement potential of a PV/T integrated dual-source heat pump unit with a pressure booster ejector. Therm Sci Eng Prog. 2023 Jan 1;37:101534.
- 9. Caliskan O, Ersoy HK. Energy analysis and performance comparison of transcritical CO2 supermarket refrigeration cycles. J Supercrit Fluids. 2022 Oct 1;189:105698.
- 10. İşkan Ü, Kahraman MC, Direk M. Comparison of R134a and R516A’s Performance at Different Air Velocities in Two Evaporator Ejector Cooling System. Hittite J Sci Eng. 2023 Mar 31;10(1):69–76.
- 11. Fingas R, Haida M, Smolka J, Besagni G, Bodys J, Palacz M, et al. Experimental analysis of the air-to-water ejector-based R290 heat pump system for domestic application. Appl Therm Eng. 2024 Jan 10;236:121800.
- 12. Ünal Ş, Erdinç MT, Akgün H, Bilgili M. Effects of alternative refrigerants on the ejector dimensions for single and dual ejectors enhanced bus air conditioning system. Int Commun Heat Mass Transf. 2023 Apr 1;143:106685.
- 13. Lawrence N, Elbel S. Experimental and Analytical Investigation of Automotive Ejector Air-Conditioning Cycles Using Low-Pressure Refrigerants. Int Refrig Air Cond Conf [Internet]. 2012 Jan 1; Available from: https://docs.lib.purdue.edu/iracc/1169
- 14. Direk M, İşkan Ü, Tunçkal C, Mert MS, Yüksel F. An experimental investigation of ejector employed a dual-evaporator vapor compression refrigeration system under various entrainment ratios using R134a as the refrigerant. Sustain Energy Technol Assess. 2022 Aug 1;52:102293.
- 15. İşkan Ü, Direk M. Experimental performance evaluation of the dual-evaporator ejector refrigeration system using environmentally friendly refrigerants of R1234ze(E), ND, R515a, R456a, and R516a as a replacement for R134a. J Clean Prod. 2022 Jun 10;352:131612.