Research Article
BibTex RIS Cite

Türkiye’de Covid-19 yayılımının araştırılmasında enterpolasyon tekniklerinin performans değerlendirmesi

Year 2025, Volume: 12 Issue: 1, 42 - 57
https://doi.org/10.9733/JGG.2025R0004.E

Abstract

Virüsler, tarih boyunca insan yaşamı ve sağlığı için önemli tehditler oluşturmuştur. Tarihsel pandemiler bağlamında Covid-19, kıtalar arasında hızla yayılmış ve 11 Mart 2020 tarihinde Dünya Sağlık Örgütü tarafından pandemi olarak ilan edilmiştir. Türkiye’deki ilk vaka da aynı tarihte tespit edilmiştir. Covid-19’un mekânsal dağılımının anlaşılması, etkili halk sağlığı planlaması ve müdahalesi için çok önemlidir. Coğrafi Bilgi Sistemleri (CBS) teknolojisi, hastalığın coğrafi dağılımını, potansiyel risk faktörlerini tedavi ve önleme için mevcut kaynakların haritalanması için bir görselleştirme aracı olarak kullanılabilmektedir. Covid-19 virüsünün mekânsal dağılımlarının ve yerel/küresel dinamiklerinin etkin bir şekilde haritalanması ve analiz edilmesi için çeşitli CBS tabanlı enterpolasyon yöntemleri kullanılmaktadır. Bu dinamiklerin anlaşılabilmesi için bu çalışma, Türkiye’deki Covid-19 pandemisindeki mekânsal-zamansal değişikliklerinin değerlendirilmesi üzerine enterpolasyon yöntemlerini kullanarak mevsimsel düzeyde ayrıntılı bir mekânsal analiz sunmaktadır. Bir yıllık dönemde incelenen mevsimler: İlkbahar, 20 Mart 2021 - 18 Haziran 2021 tarihleri arası; Yaz, 19 Haziran 2021 - 17 Eylül 2021 tarihleri arası; Sonbahar, 18 Eylül 2021 - 17 Aralık 2021 arası; ve Kış, 18 Aralık 2021 - 18 Mart 2022 tarihleri arası olarak belirlenmiştir. Mevsimsel dağılım haritaları, Ters Mesafe Ağırlıklandırma (IDW), Radyal Temelli Fonksiyon, Spline enterpolasyonu ve Ampirik Bayesian Kriging (EBK) enterpolasyon yöntemleri kullanılarak şehir ve ilçe düzeyinde mevsimsel vaka verilerinden üretilmiştir. Son olarak, Covid-19’un Türkiye’deki yayılımı mevsimsel ölçekte incelenmiş ve enterpolasyon sonuçları standart sapma, ortalama mutlak hata ve kök ortalama kare hatası ile değerlendirilmiştir. Bu çalışmanın sonuçları, Türkiye’de Covid-19 vakalarının en sık görüldüğü dönemin kış mevsimi olduğunu göstermiştir. Genel olarak, hata ölçütleri dikkate alındığında, EBK ve IDW’nin farklı ölçekler ve koşullar arasında en güvenilir yöntemler olduğu kanıtlanmıştır. Buna karşılık, Spline’ın verilere aşırı uyum sağlama eğilimi, onu bu veri kümeleri için daha az uygun hale getirmiştir.

Thanks

Bu çalışma YÖK 100/2000 Doktora Programı tarafından desteklenmiştir. Duygu Arıcan, YÖK 100/2000 Doktora Programı kapsamında YÖK tarafından belirlenen 100 ulusal öncelikli alandan biri olan “CBS ve Bilişim Uygulamaları” alanında Yükseköğretim Kurulu (YÖK) doktora bursiyeridir.

References

  • Alemdar, K. D., Kaya, Ö., Canale, A., Çodur, M. Y., & Campisi, T. (2021). Evaluation of air quality index by spatial analysis depending on vehicle traffic during the COVID-19 outbreak in Turkey. Energies, 14(18), 5729.
  • Bugdayci, I., Ugurlu, O., & Kunt, F. (2023). Spatial Analysis of SO2, PM10, CO, NO2, and O3 Pollutants: The Case of Konya Province, Turkey. Atmosphere, 14(3), 462.
  • Cong Nhut, N. (2023). Kriging interpolation model: The problem of predicting the number of deaths due to COVID-19 over time in Vietnam. EAI Endorsed Transactions on Context-Aware Systems and Applications, 9(1).
  • Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. Science of the total environment, 739, 140033.
  • Ibarra‐Bonilla, J. S., Villarreal‐Guerrero, F., Pinedo‐Alvarez, A., & Prieto‐Amparán, J. A. (2023). COVID‐19 in Chihuahua, Mexico: Assessing its spatial behaviour through the inverse distance weighted interpolation technique. The Canadian Geographies / Géographies Canadiennes, 67(4), 470-483.
  • Ikechukwu, M. N., Ebinne, E., Idorenyin, U., & Raphael, N. I. (2017). Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study. Journal of Geographic Information System, 09(03), 354–371.
  • Jedwab, R., Khan, A. M., Russ, J., & Zaveri, E. D. (2021). Epidemics, pandemics, and social conflict: Lessons from the past and possible scenarios for COVID-19. World Development, 147.
  • Jia, H., Zang, S., Zhang, L., Yakovleva, E., Sun, H., & Sun, L. (2023). Spatiotemporal characteristics and socioeconomic factors of PM2.5 heterogeneity in mainland China during the COVID-19 epidemic. Chemosphere, 331.
  • Johnson, N. P. A. S., & Mueller, J. (2002). Updating the accounts: global mortality of the 1918-1920" Spanish" influenza pandemic. Bulletin of the History of Medicine, 76(1), 105–115.
  • Kang, D., Choi, H., Kim, J. H., & Choi, J. (2020). Spatial epidemic dynamics of the COVID-19 outbreak in China. International Journal of Infectious Diseases, 94, 96–102.
  • Kırlangıçoğlu, C. (2022). Investigating the effects of regional characteristics on the spatial distribution of COVID-19 pandemic: a case of Turkey. Arabian Journal of Geosciences, 15(5).
  • Kotan, B., & Erener, A. (2023). Seasonal analysis and mapping of air pollution (PM10 and SO2) during Covid-19 lockdown in Kocaeli (Türkiye). International Journal of Engineering and Geosciences, 8(2), 173–187.
  • Kumar, J., Sahoo, S., Bharti, B. K., & Walker, S. (2020). Spatial distribution and impact assessment of COVID-19 on human health using geospatial technologies in India. International Journal of Multidisciplinary Research and Development, 7(5), 57–64.
  • Li, J., & Heap, A. D. (2008). A review of spatial interpolation methods for environmental scientists. McClymont, H., & Hu, W. (2021). Weather variability and COVID-19 transmission: A review of recent research. International Journal of Environmental Research and Public Health, 18(2), 396.
  • Murugesan, B., Karuppannan, S., Mengistie, A. T., Ranganathan, M., & Gopalakrishnan, G. (2020). Distribution and Trend Analysis of COVID-19 in India: Geospatial Approach. Journal of Geographical Studies, 4(1), 1–9.
  • Taubenberger, J. K., & Morens, D. M. (2006). 1918 Influenza: the mother of all pandemics. Revista Biomedica, 17(1), 69–79.
  • Uçar, A., Arslan, Ş., Manap, H., Gürkan, T., Çalışkan, M., Dayıoğlu, A., Efe, H., Yılmaz, M., İbrahimoğlu, A., Gültekin, E., Durna, R., Başar, R., Osmanoğlu, F., & Ören, S. (2020). Türkiye’de Covid-19 Pandemisinin Monitörizasyonu Için Interaktif Ve Gerçek Zamanlı Bir Web Uygulaması: TURCOVID19. Anatolian Clinic the Journal of Medical Sciences, 25(Special Issue on COVID 19), 154–155.
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733.
  • URL-1: Republic of Türkiye Ministry of Health. (2021, March 11). Bakan Koca, Türkiye’nin Kovid-19’la 1 Yıllık Mücadele Sürecini Değerlendirdi. https://www.saglik.gov.tr/TR,80604/bakan-koca-turkiyenin-kovid-19la-1-yillik-mucadele-surecini-degerlendirdi.html (Accessed: 1 September 2024).
  • URL-2: World Health Organization. (2023, May 5). Virtual Press conference on COVID-19 and other global health issues transcript - 5 May 2023. https://www.who.int/publications/m/item/virtual-press-conference-on-covid-19-and-other-global-health-issues-transcript---5-may-2023 (Accessed: 1 September 2024).
  • URL-3: Republic of Türkiye Ministry of Interior. (2020, December 1). Koronavirüs ile Mücadele Kapsamında - Yeni Kısıtlama ve Tedbirler Genelgeleri. https://www.icisleri.gov.tr/koronavirus-ile-mucadele-kapsaminda-sokaga-cikma-kisitlamalari---yeni-kisitlama-ve-tedbirler-genelgeleri (Accessed: 1 September 2024).

Performance assessment of interpolation techniques for investigation Covid-19 spread in Türkiye

Year 2025, Volume: 12 Issue: 1, 42 - 57
https://doi.org/10.9733/JGG.2025R0004.E

Abstract

Throughout history, viruses have posed significant threats to human life and health. In the context of the historical pandemics, Covid-19, rapidly spread across continents and was declared a pandemic by the World Health Organization on 11 March 2020. The first case in Türkiye was detected on the same date. Understanding the spatial distribution of the Covid-19 is crucial for effective public health planning and intervention. Geographic Information Systems (GIS) technology can be leveraged as a visualization aid to map the geographical distribution of the disease, the potential risk factors, and the resources available for treatment and prevention. To effectively map and analyze the spatial distributions, and local/global dynamics of the Covid-19 virus, various GIS-based interpolation methods were employed. To understand these dynamics, this study presents a detailed spatial analysis using interpolation methods to evaluate spatiotemporal changes on seasonal levels in the Covid-19 pandemic in Türkiye. Seasons investigated in a 1-year period were determined as follows: Spring, from 20 March 2021 to 18 June 2021; Summer, from 19 June 2021 to 17 September 2021; Autumn, from 18 September 2021 to 17 December 2021; and Winter, 18 December 2021 to 18 March 2022. Seasonal case distribution maps produced from city-level and district-level seasonal case data utilizing Inverse Distance Weighting (IDW), Radial Basis Function, Spline interpolation, and Empirical Bayesian Kriging (EBK) interpolation methods. Finally, the spread of Covid-19 in Türkiye was investigated on the seasonal scale, and interpolation results were assessed by standard deviation, mean absolute error, and root mean square error. The results of this study demonstrated that the period of highest incidence of cases of Covid-19 in Türkiye was winter. Overall, when considering error metrics, EBK and IDW generally proved to be the most reliable methods across different scales and conditions. In contrast, Spline interpolation’s tendency to overfit the data made it less suitable for these datasets.

Thanks

This study has been supported by YÖK 100/2000 Doctorate Program. Duygu Arıcan is a PhD scholarship holder from the Council of Higher Education (YÖK) in the field of "GIS and Informatic Applications", which is one of the 100 national priority areas determined by YÖK within the scope of the YÖK 100/2000 Doctorate Program.

References

  • Alemdar, K. D., Kaya, Ö., Canale, A., Çodur, M. Y., & Campisi, T. (2021). Evaluation of air quality index by spatial analysis depending on vehicle traffic during the COVID-19 outbreak in Turkey. Energies, 14(18), 5729.
  • Bugdayci, I., Ugurlu, O., & Kunt, F. (2023). Spatial Analysis of SO2, PM10, CO, NO2, and O3 Pollutants: The Case of Konya Province, Turkey. Atmosphere, 14(3), 462.
  • Cong Nhut, N. (2023). Kriging interpolation model: The problem of predicting the number of deaths due to COVID-19 over time in Vietnam. EAI Endorsed Transactions on Context-Aware Systems and Applications, 9(1).
  • Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. Science of the total environment, 739, 140033.
  • Ibarra‐Bonilla, J. S., Villarreal‐Guerrero, F., Pinedo‐Alvarez, A., & Prieto‐Amparán, J. A. (2023). COVID‐19 in Chihuahua, Mexico: Assessing its spatial behaviour through the inverse distance weighted interpolation technique. The Canadian Geographies / Géographies Canadiennes, 67(4), 470-483.
  • Ikechukwu, M. N., Ebinne, E., Idorenyin, U., & Raphael, N. I. (2017). Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study. Journal of Geographic Information System, 09(03), 354–371.
  • Jedwab, R., Khan, A. M., Russ, J., & Zaveri, E. D. (2021). Epidemics, pandemics, and social conflict: Lessons from the past and possible scenarios for COVID-19. World Development, 147.
  • Jia, H., Zang, S., Zhang, L., Yakovleva, E., Sun, H., & Sun, L. (2023). Spatiotemporal characteristics and socioeconomic factors of PM2.5 heterogeneity in mainland China during the COVID-19 epidemic. Chemosphere, 331.
  • Johnson, N. P. A. S., & Mueller, J. (2002). Updating the accounts: global mortality of the 1918-1920" Spanish" influenza pandemic. Bulletin of the History of Medicine, 76(1), 105–115.
  • Kang, D., Choi, H., Kim, J. H., & Choi, J. (2020). Spatial epidemic dynamics of the COVID-19 outbreak in China. International Journal of Infectious Diseases, 94, 96–102.
  • Kırlangıçoğlu, C. (2022). Investigating the effects of regional characteristics on the spatial distribution of COVID-19 pandemic: a case of Turkey. Arabian Journal of Geosciences, 15(5).
  • Kotan, B., & Erener, A. (2023). Seasonal analysis and mapping of air pollution (PM10 and SO2) during Covid-19 lockdown in Kocaeli (Türkiye). International Journal of Engineering and Geosciences, 8(2), 173–187.
  • Kumar, J., Sahoo, S., Bharti, B. K., & Walker, S. (2020). Spatial distribution and impact assessment of COVID-19 on human health using geospatial technologies in India. International Journal of Multidisciplinary Research and Development, 7(5), 57–64.
  • Li, J., & Heap, A. D. (2008). A review of spatial interpolation methods for environmental scientists. McClymont, H., & Hu, W. (2021). Weather variability and COVID-19 transmission: A review of recent research. International Journal of Environmental Research and Public Health, 18(2), 396.
  • Murugesan, B., Karuppannan, S., Mengistie, A. T., Ranganathan, M., & Gopalakrishnan, G. (2020). Distribution and Trend Analysis of COVID-19 in India: Geospatial Approach. Journal of Geographical Studies, 4(1), 1–9.
  • Taubenberger, J. K., & Morens, D. M. (2006). 1918 Influenza: the mother of all pandemics. Revista Biomedica, 17(1), 69–79.
  • Uçar, A., Arslan, Ş., Manap, H., Gürkan, T., Çalışkan, M., Dayıoğlu, A., Efe, H., Yılmaz, M., İbrahimoğlu, A., Gültekin, E., Durna, R., Başar, R., Osmanoğlu, F., & Ören, S. (2020). Türkiye’de Covid-19 Pandemisinin Monitörizasyonu Için Interaktif Ve Gerçek Zamanlı Bir Web Uygulaması: TURCOVID19. Anatolian Clinic the Journal of Medical Sciences, 25(Special Issue on COVID 19), 154–155.
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733.
  • URL-1: Republic of Türkiye Ministry of Health. (2021, March 11). Bakan Koca, Türkiye’nin Kovid-19’la 1 Yıllık Mücadele Sürecini Değerlendirdi. https://www.saglik.gov.tr/TR,80604/bakan-koca-turkiyenin-kovid-19la-1-yillik-mucadele-surecini-degerlendirdi.html (Accessed: 1 September 2024).
  • URL-2: World Health Organization. (2023, May 5). Virtual Press conference on COVID-19 and other global health issues transcript - 5 May 2023. https://www.who.int/publications/m/item/virtual-press-conference-on-covid-19-and-other-global-health-issues-transcript---5-may-2023 (Accessed: 1 September 2024).
  • URL-3: Republic of Türkiye Ministry of Interior. (2020, December 1). Koronavirüs ile Mücadele Kapsamında - Yeni Kısıtlama ve Tedbirler Genelgeleri. https://www.icisleri.gov.tr/koronavirus-ile-mucadele-kapsaminda-sokaga-cikma-kisitlamalari---yeni-kisitlama-ve-tedbirler-genelgeleri (Accessed: 1 September 2024).
There are 21 citations in total.

Details

Primary Language English
Subjects Geospatial Information Systems and Geospatial Data Modelling
Journal Section Research Article
Authors

Duygu Arıcan 0000-0002-4618-4357

Nursu Tunalıoğlu 0000-0001-9345-5220

Early Pub Date January 17, 2025
Publication Date
Submission Date September 3, 2024
Acceptance Date November 18, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Arıcan, D., & Tunalıoğlu, N. (2025). Performance assessment of interpolation techniques for investigation Covid-19 spread in Türkiye. Jeodezi Ve Jeoinformasyon Dergisi, 12(1), 42-57. https://doi.org/10.9733/JGG.2025R0004.E
AMA Arıcan D, Tunalıoğlu N. Performance assessment of interpolation techniques for investigation Covid-19 spread in Türkiye. hkmojjd. January 2025;12(1):42-57. doi:10.9733/JGG.2025R0004.E
Chicago Arıcan, Duygu, and Nursu Tunalıoğlu. “Performance Assessment of Interpolation Techniques for Investigation Covid-19 Spread in Türkiye”. Jeodezi Ve Jeoinformasyon Dergisi 12, no. 1 (January 2025): 42-57. https://doi.org/10.9733/JGG.2025R0004.E.
EndNote Arıcan D, Tunalıoğlu N (January 1, 2025) Performance assessment of interpolation techniques for investigation Covid-19 spread in Türkiye. Jeodezi ve Jeoinformasyon Dergisi 12 1 42–57.
IEEE D. Arıcan and N. Tunalıoğlu, “Performance assessment of interpolation techniques for investigation Covid-19 spread in Türkiye”, hkmojjd, vol. 12, no. 1, pp. 42–57, 2025, doi: 10.9733/JGG.2025R0004.E.
ISNAD Arıcan, Duygu - Tunalıoğlu, Nursu. “Performance Assessment of Interpolation Techniques for Investigation Covid-19 Spread in Türkiye”. Jeodezi ve Jeoinformasyon Dergisi 12/1 (January 2025), 42-57. https://doi.org/10.9733/JGG.2025R0004.E.
JAMA Arıcan D, Tunalıoğlu N. Performance assessment of interpolation techniques for investigation Covid-19 spread in Türkiye. hkmojjd. 2025;12:42–57.
MLA Arıcan, Duygu and Nursu Tunalıoğlu. “Performance Assessment of Interpolation Techniques for Investigation Covid-19 Spread in Türkiye”. Jeodezi Ve Jeoinformasyon Dergisi, vol. 12, no. 1, 2025, pp. 42-57, doi:10.9733/JGG.2025R0004.E.
Vancouver Arıcan D, Tunalıoğlu N. Performance assessment of interpolation techniques for investigation Covid-19 spread in Türkiye. hkmojjd. 2025;12(1):42-57.