Research Article
BibTex RIS Cite
Year 2020, Volume: 2 Issue: 1, 22 - 30, 04.03.2020

Abstract

References

  • \bibitem{BAR} C. B\"ar , \textit{Real Killing spinors and holonomy}, Comm. Math. Phys., \textbf{154} (1993), 509-521.
  • \bibitem{BB} G. Beldjilali, M. Belkhelfa, {\it K\"ahlerian structures on $\mathcal{D}$-homothetic bi-warping}, JGSP {\bf 42} (2016) 1-13.
  • \bibitem{BB2} G. Beldjilali , M. Belkhelfa , {\it K\"ahlerian structures on generalized doubly $\mathcal{D}$-homothetic bi-warping}, African Diaspora Journal of Mathematics, Vol. {\bf 21} N. 2 (2018) 1-14.
  • \bibitem{CHE} B. Y. Chen, {\it Geometry of submanifolds}, Marcel Dekker. Ine. New York, 1973.
  • \bibitem{BL1} D. E. Blair , {\it Contact Manifolds in Riemannian Geometry}, 17-35, Lecture Nots in Mathematics 509, Springer, 1976.
  • \bibitem{BL2} D. E. Blair, {\it Riemannian Geometry of Contact and Symplectic Manifolds}, Progress in Mathematics Vol. {\bf 203}, Birhauser, Boston, 2002.
  • \bibitem{BL3} D. E. Blair, J. A. Oubi$\tilde{n}$a, {\it Conformal and related changes of metric on the product of two almost contact metric manifolds}, Publ. Mat. {\bf 34} (1), 199-207 (1990).
  • \bibitem{BL5} D. E. Blair , {\it $\mathcal{D}$-homothetic warping}, Publications de l'institut mathématique, Nouvelle série, tome {\bf 94} (108) , 47-54 (2013).
  • \bibitem{CAL} E. Calabi {\it M\'{e}triques k\"{a}hl\'{e}riennes et fibr\'{e}s holomorphes}, Ann. Scient. Ec. Norm.Sup., {\bf 12}(1979), pp. 269-294.
  • \bibitem{OUB} J.A. Oubi$\tilde{n}$a, {\it New classes of almost contact metric structures}, Publicationes Mathematicae, Debrecen, {\bf 32}, 187-193 (1985).
  • \bibitem{TAN} S. Tanno, {\it The topology of contact Riemannian manifolds}, Illinois J. Math. {\bf 12} (1968), 700-717.
  • \bibitem{TA2} S. Tanno, {\it Partially conformal transformations with respect to $(m-1)$-dimensional distribution of $m$-dimensional Riemannian manifolds}, Tohoku Math. J. 1965. {\bf 2},  17. P. 358-409.
  • \bibitem{TM} T. Tshikuna-Matamba, {\it Quelques classes des vari\'et\'es m\'etriques \`a 3-structures presque de contact}, Annals of University of Craiova, Math. Comp. Sci. Ser. Volume {\bf 31}, 2004, Pages 94-101
  • \bibitem{WY1} Y. Watanabe, {\it Almost Hermitian and K\"{a}hler structures on product manifolds}, Proc of the Thirteenth International Workshop on Diff. Geom. {\bf 13}, (2009) 1-16.
  • \bibitem{WY2} Y. Watanabe, M. Hiroshi, {\it From Sasakian 3-structures to quaternionic geometry}, Archivum Mathematicum, {\bf 34} (1998), 379-386. \bibitem{YK} K. Yano and M. Kon, {\it Structures on Manifolds}, Series in Pure Math., Vol {\bf 3}, World Sci.,1984.

Structures and $\mathcal{D}$-isometric warping

Year 2020, Volume: 2 Issue: 1, 22 - 30, 04.03.2020

Abstract

We introduce the notion of $\mathcal{D}$-isometric warping and prove some basic properties. We give an application to some questions of the characterization of certain geometric structures. Firstly, we construct a $1$-parameter family of K\"ahlerian structures from a single Sasakian structure with a concrete example. Secondly, we build a quaternionic K\"ahlerian structure from a $3$-Sasakian structures.

Thanks

We are honored to publish in your respectable Journal..

References

  • \bibitem{BAR} C. B\"ar , \textit{Real Killing spinors and holonomy}, Comm. Math. Phys., \textbf{154} (1993), 509-521.
  • \bibitem{BB} G. Beldjilali, M. Belkhelfa, {\it K\"ahlerian structures on $\mathcal{D}$-homothetic bi-warping}, JGSP {\bf 42} (2016) 1-13.
  • \bibitem{BB2} G. Beldjilali , M. Belkhelfa , {\it K\"ahlerian structures on generalized doubly $\mathcal{D}$-homothetic bi-warping}, African Diaspora Journal of Mathematics, Vol. {\bf 21} N. 2 (2018) 1-14.
  • \bibitem{CHE} B. Y. Chen, {\it Geometry of submanifolds}, Marcel Dekker. Ine. New York, 1973.
  • \bibitem{BL1} D. E. Blair , {\it Contact Manifolds in Riemannian Geometry}, 17-35, Lecture Nots in Mathematics 509, Springer, 1976.
  • \bibitem{BL2} D. E. Blair, {\it Riemannian Geometry of Contact and Symplectic Manifolds}, Progress in Mathematics Vol. {\bf 203}, Birhauser, Boston, 2002.
  • \bibitem{BL3} D. E. Blair, J. A. Oubi$\tilde{n}$a, {\it Conformal and related changes of metric on the product of two almost contact metric manifolds}, Publ. Mat. {\bf 34} (1), 199-207 (1990).
  • \bibitem{BL5} D. E. Blair , {\it $\mathcal{D}$-homothetic warping}, Publications de l'institut mathématique, Nouvelle série, tome {\bf 94} (108) , 47-54 (2013).
  • \bibitem{CAL} E. Calabi {\it M\'{e}triques k\"{a}hl\'{e}riennes et fibr\'{e}s holomorphes}, Ann. Scient. Ec. Norm.Sup., {\bf 12}(1979), pp. 269-294.
  • \bibitem{OUB} J.A. Oubi$\tilde{n}$a, {\it New classes of almost contact metric structures}, Publicationes Mathematicae, Debrecen, {\bf 32}, 187-193 (1985).
  • \bibitem{TAN} S. Tanno, {\it The topology of contact Riemannian manifolds}, Illinois J. Math. {\bf 12} (1968), 700-717.
  • \bibitem{TA2} S. Tanno, {\it Partially conformal transformations with respect to $(m-1)$-dimensional distribution of $m$-dimensional Riemannian manifolds}, Tohoku Math. J. 1965. {\bf 2},  17. P. 358-409.
  • \bibitem{TM} T. Tshikuna-Matamba, {\it Quelques classes des vari\'et\'es m\'etriques \`a 3-structures presque de contact}, Annals of University of Craiova, Math. Comp. Sci. Ser. Volume {\bf 31}, 2004, Pages 94-101
  • \bibitem{WY1} Y. Watanabe, {\it Almost Hermitian and K\"{a}hler structures on product manifolds}, Proc of the Thirteenth International Workshop on Diff. Geom. {\bf 13}, (2009) 1-16.
  • \bibitem{WY2} Y. Watanabe, M. Hiroshi, {\it From Sasakian 3-structures to quaternionic geometry}, Archivum Mathematicum, {\bf 34} (1998), 379-386. \bibitem{YK} K. Yano and M. Kon, {\it Structures on Manifolds}, Series in Pure Math., Vol {\bf 3}, World Sci.,1984.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Beldjilali Gherici

Publication Date March 4, 2020
Published in Issue Year 2020 Volume: 2 Issue: 1

Cite

APA Gherici, B. (2020). Structures and $\mathcal{D}$-isometric warping. Hagia Sophia Journal of Geometry, 2(1), 22-30.