Year 2022,
Volume: 4 Issue: 2, 11 - 18, 30.12.2022
Şeyda Kılıçoglu
,
Süleyman Şenyurt
,
Sümeyye Gür Mazlum
References
- Gray, A. (1997). Modern differential geometry of curves and surfaces with Mathematica. 2nd edn., CRC Press, Boca Raton.
- Hacisalihoğlu, H. H. (1994). Diferensiyel geometri. Cilt 1, Inönü Üniversitesi Yayınları, Malatya.
- Lipschutz, M. M. (1969). Schaum’s outline of differential geometry. McGraw Hill Professional.
- Burke, J. F. (1960). Bertrand curves associated with a pair of curves. Mathematics Magazine, 34(1), 60-62.
- Choi, J. H., & Kim, Y. H. (2012). Associated curves of a Frenet curve and their applications. Applied Mathematics and Computation, 218(18), 9116-9124.
- Cakmak, A., & Şahin, V. (2022). Characterizations of adjoint curves according to alternative moving frame. Fundamental Journal of Mathematics and Applications, 5(1), 42-50.
- Korpinar, T., Sarıaydin, M. T., & Turhan, E. (2013). Associated curves according to Bishop frame in Euclidean 3-space. Advanced Modeling and Optimization, 15(3), 713-717.
- Çelik, O., & Özdemir M. (2022). A New Generalization of some curve pairs. International Electronic Journal of Geometry, 15(2), 215-225.
- Macit, N., Akbıyık, M., & Yüce, S. (2017). Some new associated curves of an admissible Frenet curve in 3-dimensional and 4-dimensional Galilean spaces. Romanian J. Math. Computer Sci, 7(2), 110-122.
- Macit, N., & Düldül, M. (2014). Some new associated curves of a Frenet curve in $\mathbb{E^3}$ and $\mathbb{E^4}$. Turkish Journal ofMathematics, 38(6), 1023-1037.
- Şenyurt, S., Canlı, D., & Ayvacı, H. (2022). Associated curves from a different point of view in $E^3$. Communications Series A1 Mathematics & Statistics, 71(3), 826-845.
- Qian, J., & Kim, Y. H. (2015). Directional associated curves of a null curve in Minkowski 3-space. Bulletin of the Korean Mathematical Society, 52(1), 183-200.
- Liu, H., & Wang F. (2008). Mannheim partner curves in 3-space. Journal of Geometry, 88(1), 120-126.
- Schief, W. K. (2003). On the integrability of Bertrand curves and Razzaboni surfaces. Journal of Geometry and Physics, 45(1), 130-150.
- Gür, S., & Senyurt, S. (2013). Spacelike–timelike involute–evolute curve couple on dual Lorentzian space. J. Math. Comput. Sci. 3(4), 1054-1075.
- Izumiya, S., & Takeuchi, N. (2002). Generic properties of helices and Bertrand curves. Journal of Geometry, 74, 97-109.
- Lucas, P., & Ortega-Yagues, J. A. (2012). Bertrand curves in the three-dimensional sphere. Journal of Geometry and Physics, 62(9), 1903-1914.
- Orbay, K., & Kasap, E. (2009). On Mannheim partner curves in $E^3$. International Journal of Physical Sciences, 4(5), 261-264.
- Sentürk, G. Y., & Yüce, S. (2017). Bertrand offsets of ruled surfaces with Darboux frame. Results in Mathematics, 72(3), 1151-1159.
- Senyurt, S., & Çalışkan, A. (2017). Smarandache curves of Mannheim curve couple according to Frenet frame. Mathematical Sciences and Applications E-Notes, 5(1), 122-136.
- Balgetir, H., Bektas, M., & Inoguchi, J. I. (2004). Null Bertrand curves in Minkowski 3-space and their characterizations. Note di Matematica, 23(1), 7-13.
- Senyurt, S., Ayvacı, H., & Canlı, D. (2022). Family of surfaces with a common special involute and evolute curves. International Electronic Journal of Geometry, 15(1), 160-174.
- Senyurt, S., & Gür, S. (2012). Timelike–spacelike involute–evolute curve couple on dual Lorentzian space. J. Math. Comput. Sci., 2(6), 1808-1823.
- Song, X., Li, E., & Pei, D. (2022). Legendrian dualities and evolute-involute curve pairs of spacelike fronts in null sphere. Journal of Geometry and Physics, 178, 104543.
- Gür, S., & Senyurt, S. (2010). Frenet vectors and geodesic curvatures of spheric indicators of Salkowski curve in $\mathbb{E^3}$. Hadronic Journal, 33(5), 485-512.
- Gür Mazlum, S., & Bektaş, M. (2022). On the modified orthogonal frames of the non-unit speed curves in Euclidean space $\mathbb{E^3}$. Turkish Journal of Science, 7(2), 58-74.
- Gür Mazlum, S., Şenyurt S., & Bektaş, M. (2022). Salkowski curves and their modified orthogonal frames in $\mathbb{E^3}$. Journal of New Theory, 40, 12-26.
- Aksan, B., & Gür Mazlum, S. (2022). On the pole indicatrix curve of the spacelike Salkowski curve with timelike principal normal in Lorentzian 3-space. Gümüşhane University Journal of Science and Technology, 12(4), 1168-1179.
- Kılıçoğlu Ş, & Hacısalihoğlu, H. H. (2008). On the b-scrolls with time-like generating vector in $3$-dimensional Minkowski space $E^3$. Beykent University Journal of Science and Technology, 3(2), 55-67.
- Kılıçoğlu Ş, & Senyurt S. (2022). How to find a Bezier curve in $E^3$. Communications in Advanced Mathematical Sciences, 5(1), 12-24.
- Li, Y., Liu, S.,& Wang, Z. (2021). Tangent developables and Darboux developables of framed curves. Topology and Its Applications, 301, 107526.
- Li, Y., Wang, Z., & Zhao, T. (2020). Slant helix of order n and sequence of Darboux developables of principal-directional curves. Mathematical Methods in the Applied Sciences, 43(17), 9888-9903.
- Senyurt, S., & Öztürk, B. (2018). Smarandache curves of Salkowski curve according to Frenet frame. Turkish Journal of Mathematics and Computer Science, 10, 190-201.
- Senyurt, S., Gür S., & Özyılmaz, E. (2015). The Frenet vectors and the geodesic curvatures of spherical indicatrix of the timelike Salkowski curve in Minkowski $3$-space. Journal of Advanced Research in Dynamical and Control Systems, 7(4), 20-42.
- Senyurt S., & Eren, K. (2020). Smarandache curves of spacelike anti-Salkowski curve with a spacelike principal normal according to Frenet frame. Gümüşhane University Journal of Science and Technology, 10, 251-260.
- Senyurt, S., Canlı, D., & Çan, E. (2022). Some special Smarandache ruled surfaces by Frenet frame in $E^3$-I. Turkish Journal of Science, 7(1), 31-42.
- Senyurt, S., Canlı, D., Çan, E., & Gür Mazlum, S. (2022). Some special Smarandache ruled surfaces by Frenet frame in $E^3$-II. Honam Mathematical Journal, 44(4), 594-617.
- Yüksel, N., Saltık B., & Damar, E. (2014). Parallel curves in Minkowski $3$-space. Gümüşhane University Journal of Science and Technology, 12(2), 480-486.
- Kılıcoglu S., & Senyurt, S. (2022). On the matrix representation of 5th order Bezier curve and derivatives in $E^3$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 133-152.
The Frenet Vectors and the Curvatures of Curves $\mathit{{\mathbf{N-T^{\ast }B^{\ast }}}}$ in $\mathbf{E}^{3}$
Year 2022,
Volume: 4 Issue: 2, 11 - 18, 30.12.2022
Şeyda Kılıçoglu
,
Süleyman Şenyurt
,
Sümeyye Gür Mazlum
Abstract
In this paper, we describe a new pair of curves where the principal normal vector of a curve $\beta$ and an vector $R^*$ lying in the rectifian plane of a curve $\beta^*$ are linearly dependent. We name them the curves $N-T^{\ast }B^{\ast }$. And we express the Frenet vectors and the curvatures of the curve $\beta^*$ in terms of the Frenet vectors and the curvatures of the curve $\beta$.
References
- Gray, A. (1997). Modern differential geometry of curves and surfaces with Mathematica. 2nd edn., CRC Press, Boca Raton.
- Hacisalihoğlu, H. H. (1994). Diferensiyel geometri. Cilt 1, Inönü Üniversitesi Yayınları, Malatya.
- Lipschutz, M. M. (1969). Schaum’s outline of differential geometry. McGraw Hill Professional.
- Burke, J. F. (1960). Bertrand curves associated with a pair of curves. Mathematics Magazine, 34(1), 60-62.
- Choi, J. H., & Kim, Y. H. (2012). Associated curves of a Frenet curve and their applications. Applied Mathematics and Computation, 218(18), 9116-9124.
- Cakmak, A., & Şahin, V. (2022). Characterizations of adjoint curves according to alternative moving frame. Fundamental Journal of Mathematics and Applications, 5(1), 42-50.
- Korpinar, T., Sarıaydin, M. T., & Turhan, E. (2013). Associated curves according to Bishop frame in Euclidean 3-space. Advanced Modeling and Optimization, 15(3), 713-717.
- Çelik, O., & Özdemir M. (2022). A New Generalization of some curve pairs. International Electronic Journal of Geometry, 15(2), 215-225.
- Macit, N., Akbıyık, M., & Yüce, S. (2017). Some new associated curves of an admissible Frenet curve in 3-dimensional and 4-dimensional Galilean spaces. Romanian J. Math. Computer Sci, 7(2), 110-122.
- Macit, N., & Düldül, M. (2014). Some new associated curves of a Frenet curve in $\mathbb{E^3}$ and $\mathbb{E^4}$. Turkish Journal ofMathematics, 38(6), 1023-1037.
- Şenyurt, S., Canlı, D., & Ayvacı, H. (2022). Associated curves from a different point of view in $E^3$. Communications Series A1 Mathematics & Statistics, 71(3), 826-845.
- Qian, J., & Kim, Y. H. (2015). Directional associated curves of a null curve in Minkowski 3-space. Bulletin of the Korean Mathematical Society, 52(1), 183-200.
- Liu, H., & Wang F. (2008). Mannheim partner curves in 3-space. Journal of Geometry, 88(1), 120-126.
- Schief, W. K. (2003). On the integrability of Bertrand curves and Razzaboni surfaces. Journal of Geometry and Physics, 45(1), 130-150.
- Gür, S., & Senyurt, S. (2013). Spacelike–timelike involute–evolute curve couple on dual Lorentzian space. J. Math. Comput. Sci. 3(4), 1054-1075.
- Izumiya, S., & Takeuchi, N. (2002). Generic properties of helices and Bertrand curves. Journal of Geometry, 74, 97-109.
- Lucas, P., & Ortega-Yagues, J. A. (2012). Bertrand curves in the three-dimensional sphere. Journal of Geometry and Physics, 62(9), 1903-1914.
- Orbay, K., & Kasap, E. (2009). On Mannheim partner curves in $E^3$. International Journal of Physical Sciences, 4(5), 261-264.
- Sentürk, G. Y., & Yüce, S. (2017). Bertrand offsets of ruled surfaces with Darboux frame. Results in Mathematics, 72(3), 1151-1159.
- Senyurt, S., & Çalışkan, A. (2017). Smarandache curves of Mannheim curve couple according to Frenet frame. Mathematical Sciences and Applications E-Notes, 5(1), 122-136.
- Balgetir, H., Bektas, M., & Inoguchi, J. I. (2004). Null Bertrand curves in Minkowski 3-space and their characterizations. Note di Matematica, 23(1), 7-13.
- Senyurt, S., Ayvacı, H., & Canlı, D. (2022). Family of surfaces with a common special involute and evolute curves. International Electronic Journal of Geometry, 15(1), 160-174.
- Senyurt, S., & Gür, S. (2012). Timelike–spacelike involute–evolute curve couple on dual Lorentzian space. J. Math. Comput. Sci., 2(6), 1808-1823.
- Song, X., Li, E., & Pei, D. (2022). Legendrian dualities and evolute-involute curve pairs of spacelike fronts in null sphere. Journal of Geometry and Physics, 178, 104543.
- Gür, S., & Senyurt, S. (2010). Frenet vectors and geodesic curvatures of spheric indicators of Salkowski curve in $\mathbb{E^3}$. Hadronic Journal, 33(5), 485-512.
- Gür Mazlum, S., & Bektaş, M. (2022). On the modified orthogonal frames of the non-unit speed curves in Euclidean space $\mathbb{E^3}$. Turkish Journal of Science, 7(2), 58-74.
- Gür Mazlum, S., Şenyurt S., & Bektaş, M. (2022). Salkowski curves and their modified orthogonal frames in $\mathbb{E^3}$. Journal of New Theory, 40, 12-26.
- Aksan, B., & Gür Mazlum, S. (2022). On the pole indicatrix curve of the spacelike Salkowski curve with timelike principal normal in Lorentzian 3-space. Gümüşhane University Journal of Science and Technology, 12(4), 1168-1179.
- Kılıçoğlu Ş, & Hacısalihoğlu, H. H. (2008). On the b-scrolls with time-like generating vector in $3$-dimensional Minkowski space $E^3$. Beykent University Journal of Science and Technology, 3(2), 55-67.
- Kılıçoğlu Ş, & Senyurt S. (2022). How to find a Bezier curve in $E^3$. Communications in Advanced Mathematical Sciences, 5(1), 12-24.
- Li, Y., Liu, S.,& Wang, Z. (2021). Tangent developables and Darboux developables of framed curves. Topology and Its Applications, 301, 107526.
- Li, Y., Wang, Z., & Zhao, T. (2020). Slant helix of order n and sequence of Darboux developables of principal-directional curves. Mathematical Methods in the Applied Sciences, 43(17), 9888-9903.
- Senyurt, S., & Öztürk, B. (2018). Smarandache curves of Salkowski curve according to Frenet frame. Turkish Journal of Mathematics and Computer Science, 10, 190-201.
- Senyurt, S., Gür S., & Özyılmaz, E. (2015). The Frenet vectors and the geodesic curvatures of spherical indicatrix of the timelike Salkowski curve in Minkowski $3$-space. Journal of Advanced Research in Dynamical and Control Systems, 7(4), 20-42.
- Senyurt S., & Eren, K. (2020). Smarandache curves of spacelike anti-Salkowski curve with a spacelike principal normal according to Frenet frame. Gümüşhane University Journal of Science and Technology, 10, 251-260.
- Senyurt, S., Canlı, D., & Çan, E. (2022). Some special Smarandache ruled surfaces by Frenet frame in $E^3$-I. Turkish Journal of Science, 7(1), 31-42.
- Senyurt, S., Canlı, D., Çan, E., & Gür Mazlum, S. (2022). Some special Smarandache ruled surfaces by Frenet frame in $E^3$-II. Honam Mathematical Journal, 44(4), 594-617.
- Yüksel, N., Saltık B., & Damar, E. (2014). Parallel curves in Minkowski $3$-space. Gümüşhane University Journal of Science and Technology, 12(2), 480-486.
- Kılıcoglu S., & Senyurt, S. (2022). On the matrix representation of 5th order Bezier curve and derivatives in $E^3$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 133-152.