Research Article
BibTex RIS Cite
Year 2023, Volume: 5 Issue: 1, 11 - 14, 26.06.2023

Abstract

References

  • Hirschfeld, J.W.P. & Thas, J.A. (2016). General Galois geometries. Springer Monographs in Mathematics, Springer- Verlag London.
  • Bayar, A., Akça, Z., Altıntas, E. & Ekmekci, S. (2016). On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9. New Trends in Mathematical Science. 4(4), 266-275.
  • Ekmekçi, S., Bayar, A., Altıntas, E. & Akça, Z. (2016). On the Complete (k , 2)-arcs of the Hall plane of order 9. International Journal of Advanced Research in Computer Science and Software Engineering. 6(10), 282-288.
  • Akça, Z., Ekmekci, S. & Bayar, A. (2016). On Fano configurations of the left Hall plane of order 9. Konuralp Journal of Mathematics. 4(2), 116-123.
  • Akça, Z. & Altıntaş, A. (2021). A note on Fano configurations in the Projective space PG(5,2). Konuralp Journal of Mathematics. 9(1), 190-192.
  • Akça, Z. (2011). A numerical computation of (k,3)-arcs in the left semifield plane of order 9. International Electronic Journal of Geometry. 4(2), 13-21.
  • Akça, Z. & Günaltılı, İ. (2012). On the (k,3)-arcs of CPG(2,25,5). Anadolu University Journal of Science and Technology-B Theoretical Sciences. 2(1), 21-27.
  • Qassim B.A. (2020). The construction for the arcs (8,4)-from the two arcs (7,4)-in PG(2,q), q=5. J. Phys.: Conf. Ser. 1664(1), 012039.
  • Hirschfeld, J.W.P. & Thas, J.A. (1991). General Galois geometries. The Charendon Press, Oxford.
  • Hall M. (1943). Projective planes. Trans. Am. Math. Soc. 54, 229-277.
  • Hall M., Swift Jr, J.D. & Killgrove R. (1959). On projective planes of order nine. Mathematics of Computation. 13(68), 233-246.

Complete $\mathbf{(k,2)}$-Arcs in the Projective Plane Order $\mathbf{5}$

Year 2023, Volume: 5 Issue: 1, 11 - 14, 26.06.2023

Abstract

In this study, the complete $(k,2)$-arcs in the projective plane of order $5$ coordinatized by elements of GF$(5)$ are investigated by applying the algorithm (implemented in C#) to determine arcs.

References

  • Hirschfeld, J.W.P. & Thas, J.A. (2016). General Galois geometries. Springer Monographs in Mathematics, Springer- Verlag London.
  • Bayar, A., Akça, Z., Altıntas, E. & Ekmekci, S. (2016). On the complete arcs containing the quadrangles constructing the Fano planes of the left near field plane of order 9. New Trends in Mathematical Science. 4(4), 266-275.
  • Ekmekçi, S., Bayar, A., Altıntas, E. & Akça, Z. (2016). On the Complete (k , 2)-arcs of the Hall plane of order 9. International Journal of Advanced Research in Computer Science and Software Engineering. 6(10), 282-288.
  • Akça, Z., Ekmekci, S. & Bayar, A. (2016). On Fano configurations of the left Hall plane of order 9. Konuralp Journal of Mathematics. 4(2), 116-123.
  • Akça, Z. & Altıntaş, A. (2021). A note on Fano configurations in the Projective space PG(5,2). Konuralp Journal of Mathematics. 9(1), 190-192.
  • Akça, Z. (2011). A numerical computation of (k,3)-arcs in the left semifield plane of order 9. International Electronic Journal of Geometry. 4(2), 13-21.
  • Akça, Z. & Günaltılı, İ. (2012). On the (k,3)-arcs of CPG(2,25,5). Anadolu University Journal of Science and Technology-B Theoretical Sciences. 2(1), 21-27.
  • Qassim B.A. (2020). The construction for the arcs (8,4)-from the two arcs (7,4)-in PG(2,q), q=5. J. Phys.: Conf. Ser. 1664(1), 012039.
  • Hirschfeld, J.W.P. & Thas, J.A. (1991). General Galois geometries. The Charendon Press, Oxford.
  • Hall M. (1943). Projective planes. Trans. Am. Math. Soc. 54, 229-277.
  • Hall M., Swift Jr, J.D. & Killgrove R. (1959). On projective planes of order nine. Mathematics of Computation. 13(68), 233-246.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Elif Altıntaş

Ayşe Bayar

Early Pub Date June 21, 2023
Publication Date June 26, 2023
Published in Issue Year 2023 Volume: 5 Issue: 1

Cite

APA Altıntaş, E., & Bayar, A. (2023). Complete $\mathbf{(k,2)}$-Arcs in the Projective Plane Order $\mathbf{5}$. Hagia Sophia Journal of Geometry, 5(1), 11-14.