Review
BibTex RIS Cite

The effects of KISS1, GDF9 and BMP15 genes on reproductive traits in goats: A review

Year 2024, , 172 - 177, 31.08.2024
https://doi.org/10.30704/http-www-jivs-net.1489927

Abstract

This review article presents a comprehensive analysis of the genetic factors determining reproductive performance in goats. Reproductive capacity is a critical parameter that directly affects economic efficiency in the livestock industry. Genetic studies have enabled the identification of various genes and genetic mechanisms influencing reproductive performance in goats, including key genes such as KISS1, GDF9 and BMP15. It is essential to examine the reproductive conditions and traits in farm animals, particularly in indigenous goat breeds historically, culturally, and economically significant in our country. This review examines KISS1, GDF9 and BMP15 genes associated with reproduction, their functions, and their impacts on reproductive biology in light of current literature. The importance of modern genetic techniques and biotechnological applications in enhancing reproductive efficiency in goat populations is also discussed. This review provides data for the optimization of gene selection strategies and the integration of current genetic knowledge to improve reproductive performance in goat breeding.

References

  • An, X. P., Hou, J. X., Zhao, H. B., Li, G., Bai, L., Peng, J. Y., Yan, Q. M., Song, Y. X., Wang, J. G., & Cao, B. Y. (2012). Polymorphism identification in goat GnRH1 and GDF9 genes and their association analysis with litter size. Animal Genetics, 44, 234-238.
  • An, X., Ma, T., Hou, J., Fang, F., Han, P., Yan, Y., Zhao, H., Song, Y., Wang, J., & Cao, B. (2013). Association analysis between variants in KISS1 gene and litter size in goats. BMC Genetics, 14(63), 1-6.
  • An, X., Han, P., Hou, J., Zhao, H. B., Yan, Y., Ma, T., Fang, F., Meng, F., Song, Y. X., Wang, J. G., & Cao, B. (2013). Molecular cloning and characterization of KISS1 promoter and effect of KISS1 gene mutations on litter size in the goat. Genetics and Molecular Research: GMR, 12(4), 4308-4316.
  • Ashwell, M. S., Hayen, D. W., Sonstegard, T. S., Van Tanssell, C. P., Da, Y., VanRaden, P. M., Ron, M., Weller, J. I. & Lewin, H. A. (2004). Detection of quantitative trait loci affecting milk production, health and reproductive traits in Holstein cattle. Journal of Dairy Science, 87, 468-475.
  • Balcıoğlu, M. S., Karslı, T., Şahin, E., Ulutaş, Z. & Aksoy, Y. (2014). Türkiye’de yetiştirilen bazı yerli koyun ırklarında kalpastatin (CAST) geni polimorfizminin PCR-RFLP yöntemiyle belirlenmesi. Journal of Agricultural Sciences, 20, 427-433.
  • Caraty, A., Franceschini, I., & Hoffman, G. E. (2010). Kisspeptin and the preovulatory gonadotrophin-releasing hormone/luteinising hormone surge in the ewe, basic aspects and potential applications in the control of ovulation. Journal of Neuroendocrinol, 22, 710–715.
  • Cao, G., Chu, M., Fang, L. J., Di, R., Feng, T., & Li, N. (2010). Analysis on DNA sequence of KiSS-1 gene and its association with litter size in goats. Molecular Biology Reports, 37, 3921-3929.
  • Dangar, N. S., Pandya, G. M., Ramani, U. V., Kharadi, V. B., & Brahmkshtri, B. P. (2022). Association study of fecundity gene BMP 15 with prolificacy in surti goats under farm and field condition of South Gujarat Region. Indian Journal of Veterinary Sciencesand Biotechnology, 18, 100-104.
  • Daşkıran, İ., Savaş, T., Koyuncu, M., Koluman, N., Keskin, M., Esenbuğa, N., Konyalı, A., Cemal, İ., Gül, S., Elmaz, Ö., Koşum, N., Dellal, G., & Bi̇ngöl, M. (2018). Goat production systems of Turkey: Nomadic to industrial. Small Ruminant Research, 163, 15-20.
  • Elvin, J. A., Clark, A. T., Wang, P., Wolfman, N. M., & Matzuk, M. M. (1999). Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Molecular Endocrinology, 13(6), 1035-1048.
  • Farhadi, A., Genualdo, V., Perucatti, A., Hafezian, S.H., Rahimi-Mianji, G., De Lorenzi, L., Parma, P., Iannuzzi, L., & Iannuzzi, A. (2013). Comparative FISH mapping of BMPR1B, BMP15 and GDF9 fecundity genes on cattle, river buffalo, sheep and goat chromosomes. Journal of Genetics, 92(3), 595-597.
  • Febriana, A., Sutopo, S., Kurnianto, E., & Widiyanto, W. (2022). A Novel SNPs of KISS1 gene strongly associated with litter size in indonesian goat breeds. Tropical Animal Science Journal. 45(3), 255-269.
  • Feng, T., Geng, C. X., Lang, X. Z., Chu, M. X., Cao, G. L., Di, R.,   Fang, L., Chen, H. Q., Liu, X. L., & Li, N. (2011). Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Molecular Biology Reports, 38, 5189-5197.
  • Fulghesu, A. M., Lanzone, A., Apa, R., Guido, M., Ciampelli, M., Cucinelli, F., Caruso, A., & Mancuso, S. (1997). The hypothalamic-pituitary-luteal axis in women: effects of long-term orally active opioid antagonist (naltrexone) administration. Journal of Endocrinological Investigation, 20, 368-373.
  • Getaneh, M., & Alemayehu, K. (2022). Candidate genes associated with economically important traits in dairy goats. Cogent Food & Agriculture, 8(1), 2149131, 1-39.
  • Ghoreishi, H., Fathi-Yosefabad, S., Shayegh, J., & Barzegari, A. (2019). Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Archives Animal Breeding, 62(2), 565-570.
  • Harter, C. J., Kavanagh, G. S., & Smith, J. (2018). The role of kisspeptin neurons in reproduction and metabolism. The Journal of endocrinology, 238, 3, R173-R183.
  • He, Y., Ma, X., Liu, X., Zhang, C., & Li, J. (2010). Candidate genes polymorphism and its association to prolificacy in Chinese goats. Journal of Agricultural Science, 2(1), 88-92.
  • Imaniah, N. H., Susilorini, T. E., Kuswati, K., & Wahyuni, R. D. (2023). GDF9 gene polymorphism and its relation to litter size in East Java Pote goat germplasm. BIO Web of Conferences, The 4th International Conference on Environmentally Sustainable Animal Industry (ICESAI 2023), 81, 7. https://doi.org/10.1051/bioconf/20238100007
  • Islam, M., Basheer, A., Javed, K., Anjum, A., & Zahoor, I. (2019). PCR-RFLP-based identification of polymorphisms in BMPR1B, GDF9, and BMP15 genes associated with litter size in Beetal and Teddy goats. South African Journal of Animal Science, 49, 697.
  • Jassim, A., & Al-Azzawi, S. H. (2022). Estimation of genetic variance based on the growth differentiation factor 9 (GDF9) gene and its association with semen quality in local Iraqi goats. Diyala Agricultural Sciences Journal, 14, 14-20.
  • Jih, M. H., & Wu, T. C. J. (1995). Altered regulation of pituitary luteinizing hormone secretion by GnRH and inhibin in the aged persistent-estrous female rat. Mechanisms of Ageing and Development, 84, 15–27.
  • Juengel, J. L., Hudson, N. L., Heath, D. A., Smith, P., Reader, K. L., Lawrence, S. B., O’Connell, A. R., Laitinen, M. P., Cranfield, M., Groome, N. P., Ritvos, O., & McNatty, K. P. (2002). Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular developmentin sheep. Biology of Reproduction, 67(6), 1777-1789.
  • Kaymakçı, M. (2006). Keçi Yetiştiriciliği. İzmir ili damızlık koyun-keçi yetiştiricileri birliği yayınları, No:2. Bornova-İzmir, Türkiye.
  • Kaymakçı, M., Koşum, N., Taşkın, T. & Akbaş, Y. (2006). Menemen koyunlarında kimi verim özelliklerinin belirlenmesi üzerine bir araştırma. Ege Üniversitesi Ziraat Fakültesi Dergisi 43, 63-74.
  • Mahmoudi, P., Rashidi, A., Rostamzadeh, J., & Razmkabir, M. (2019). Association between c.1189G>A. Reproduction Science, 209, 106140.
  • Moore, R.K., & Shimasaki, S. (2005). Molecular biology and physiological role of the oocyte factor, BMP-15. Molecular Cell Endocrinology, 234(1-2), 67-73.
  • Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., Masuda, Y., Ishibashi, Y., Watanabe, T., Asada, M., Yamada, T., Suenaga, M., Kitada, C., Usuki, S., Kurokawa, T., Onda, H., Nishimura, O., & Fujino, M. (2001). Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 411, 613-617.
  • Paulini, F., & de Oliveira Melo, E. (2011). The role of oocyte-secreted factors GDF9 and BMP15 in follicular development and oogenesis. Reproduction in domestic animals = Zuchthygiene, 46(2), 354-361.
  • Primrose, S. B. & Twyman, R. M. (2006). Principles of gene manipulation and genomics. 7th edition. Malden-Blackwell, United States of America.
  • Pringle, H. (1998). Neolithic agriculture:reading the signs of ancient animal domestication. Sciences, 282, 1448. Polley, S., De, S., Batabyal, S., Kaushik, R., Yadav, P., Arora, J. S., et al. (2009). Polymorphism of fecundity genes (BMPR1B, BMP15 and GDF9) in the Indian prolific Black Bengal goat. Small Ruminant Research, 85(2-3), 122-129.
  • Porter, V. (1996). Goats of the world. Farming pres. Ipswich, United Kingdom. Rahawy, M. A., & Al-Mutar, H. A. (2021). Association of the KiSS1 gene with litter size in Cyprus and Iraqi black goats. Veterinary World, 14, 1995-2001.
  • Rumanta, M., Kunda, R. M., Volkandari, S. D., & Munir, I. M., (2023). Impact of Environmental Geographic toward Point Mutations in Exon 1 of Growth Differentiation Factor (GDF9) Gene in Kosta and Lakor Goat Breeds. Jurnal Penelitian Pendidikan IPA, 9(6), 4813-4819.
  • Sankhyan, V., Thakur, Y. P., & Dogra, P. K. (2020). Association of kisspeptin gene (KISS1) with litter size in migratory Gaddi goats in western Himalayan state of Himachal Pradesh. The Indian Journal of Animal Sciences. 89(12), 1352-1355.
  • Schrooten, C., Bovenhuis, H., Coppieters, W., & Van Arendonk, J. A. M. (1999). Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. Journal of Dairy Science. 83, 795-806.
  • Shaha, M., Miah, G., Lima, A., Miazi, O. F., Gupta, M. D., & Das, A. (2022). Identification of polymorphisms in GDF9 and BMP15 genes in Jamunapari and crossbred goats in Bangladesh. Tropical Animal Health and Production, 54(6), 350.
  • Sharma, A., Dutt, G., Jayakumar, S., Saroha, V., & Verma, N. K., 2013. Genetic structuring of nine Indian domestic goat breeds based on SNPs identified in IGF-1 gene. Animal Biotechnology, 24, 148-157.
  • Shokrollahi, B. (2015). Investigation of BMP15 gene polymorphisms associated with twining in Markhoz goat. Biharean Biologist, 9, 1-4.
  • Turkish Statistical Institute. (2024). Homepage. Turkish Statistical Institute. Retrieved May 2024, from http://www.tuik.gov.tr/Start.do
  • Wang, X., Yang, Q., Wang, K., Yan, H., Pan, C., Chen, H., et al. (2019). Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology, 125, 115–121.
  • Wang, X., Yang, Q., Zhang, S., Zhang, X., Pan, C., Chen, H., Zhu, H., & Lan, X. (2019). Genetic effects of single nucleotide polymorphisms in the goat GDF9 gene on prolificacy: True or false positive? Animals (Basel), 9(11), 886.
  • Wang, Y.Q., Li, Y.X., Zhang, N., Wang, Z.B., & Bai, J.Y. (2011). Polymorphism of exon 2 of BMP15 gene and its relationship with litter size of two Chinese goats. Asian-Australasian Journal of Animal Sciences, 24(7), 905-911. Weikard, R., Kühn, C., Goldammer, T., Freyer, G. & Schwerin, M. (2004). The bovine PPARGC1A gene: molecular charaterization and association of an SNP with variation of milk fat synthesis. Physiological Genomics. 21, 1-13.
  • Weller, J. I. (2009). Quantitative trait loci analysis in animals. Modular Texts. Cambridge, United States of America.
  • West, A., Vojta, P. J., Welch, D. R., & Weissman, B. E. (1998). Chromosome localization and genomic structure of the KiSS1 metastasis suppressor gene (KiSS1). Genomics, 54, 145-148.
  • World Population Review. (2021). Goat Population by Country. World Population. Retrieved May 2024 from https://worldpopulationreview.com/country-rankings/goat-population-by-country
  • Yeo, S. & College, W. H. (2018). The role of KiSS 1 neurons as integrators of endocrine, metabolic, and environmental factors in the hypothalamic–pituitary–gonadal axis. Frontiers in Endocrinology, 9(188), 1-13.
  • Zeder, M. A., & Hesse, B. (2000). The initial domestication of goats (Capra hircus) in the Zagros Mountain 10000 years ago. Science. 287, 2254-2257.
Year 2024, , 172 - 177, 31.08.2024
https://doi.org/10.30704/http-www-jivs-net.1489927

Abstract

References

  • An, X. P., Hou, J. X., Zhao, H. B., Li, G., Bai, L., Peng, J. Y., Yan, Q. M., Song, Y. X., Wang, J. G., & Cao, B. Y. (2012). Polymorphism identification in goat GnRH1 and GDF9 genes and their association analysis with litter size. Animal Genetics, 44, 234-238.
  • An, X., Ma, T., Hou, J., Fang, F., Han, P., Yan, Y., Zhao, H., Song, Y., Wang, J., & Cao, B. (2013). Association analysis between variants in KISS1 gene and litter size in goats. BMC Genetics, 14(63), 1-6.
  • An, X., Han, P., Hou, J., Zhao, H. B., Yan, Y., Ma, T., Fang, F., Meng, F., Song, Y. X., Wang, J. G., & Cao, B. (2013). Molecular cloning and characterization of KISS1 promoter and effect of KISS1 gene mutations on litter size in the goat. Genetics and Molecular Research: GMR, 12(4), 4308-4316.
  • Ashwell, M. S., Hayen, D. W., Sonstegard, T. S., Van Tanssell, C. P., Da, Y., VanRaden, P. M., Ron, M., Weller, J. I. & Lewin, H. A. (2004). Detection of quantitative trait loci affecting milk production, health and reproductive traits in Holstein cattle. Journal of Dairy Science, 87, 468-475.
  • Balcıoğlu, M. S., Karslı, T., Şahin, E., Ulutaş, Z. & Aksoy, Y. (2014). Türkiye’de yetiştirilen bazı yerli koyun ırklarında kalpastatin (CAST) geni polimorfizminin PCR-RFLP yöntemiyle belirlenmesi. Journal of Agricultural Sciences, 20, 427-433.
  • Caraty, A., Franceschini, I., & Hoffman, G. E. (2010). Kisspeptin and the preovulatory gonadotrophin-releasing hormone/luteinising hormone surge in the ewe, basic aspects and potential applications in the control of ovulation. Journal of Neuroendocrinol, 22, 710–715.
  • Cao, G., Chu, M., Fang, L. J., Di, R., Feng, T., & Li, N. (2010). Analysis on DNA sequence of KiSS-1 gene and its association with litter size in goats. Molecular Biology Reports, 37, 3921-3929.
  • Dangar, N. S., Pandya, G. M., Ramani, U. V., Kharadi, V. B., & Brahmkshtri, B. P. (2022). Association study of fecundity gene BMP 15 with prolificacy in surti goats under farm and field condition of South Gujarat Region. Indian Journal of Veterinary Sciencesand Biotechnology, 18, 100-104.
  • Daşkıran, İ., Savaş, T., Koyuncu, M., Koluman, N., Keskin, M., Esenbuğa, N., Konyalı, A., Cemal, İ., Gül, S., Elmaz, Ö., Koşum, N., Dellal, G., & Bi̇ngöl, M. (2018). Goat production systems of Turkey: Nomadic to industrial. Small Ruminant Research, 163, 15-20.
  • Elvin, J. A., Clark, A. T., Wang, P., Wolfman, N. M., & Matzuk, M. M. (1999). Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Molecular Endocrinology, 13(6), 1035-1048.
  • Farhadi, A., Genualdo, V., Perucatti, A., Hafezian, S.H., Rahimi-Mianji, G., De Lorenzi, L., Parma, P., Iannuzzi, L., & Iannuzzi, A. (2013). Comparative FISH mapping of BMPR1B, BMP15 and GDF9 fecundity genes on cattle, river buffalo, sheep and goat chromosomes. Journal of Genetics, 92(3), 595-597.
  • Febriana, A., Sutopo, S., Kurnianto, E., & Widiyanto, W. (2022). A Novel SNPs of KISS1 gene strongly associated with litter size in indonesian goat breeds. Tropical Animal Science Journal. 45(3), 255-269.
  • Feng, T., Geng, C. X., Lang, X. Z., Chu, M. X., Cao, G. L., Di, R.,   Fang, L., Chen, H. Q., Liu, X. L., & Li, N. (2011). Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Molecular Biology Reports, 38, 5189-5197.
  • Fulghesu, A. M., Lanzone, A., Apa, R., Guido, M., Ciampelli, M., Cucinelli, F., Caruso, A., & Mancuso, S. (1997). The hypothalamic-pituitary-luteal axis in women: effects of long-term orally active opioid antagonist (naltrexone) administration. Journal of Endocrinological Investigation, 20, 368-373.
  • Getaneh, M., & Alemayehu, K. (2022). Candidate genes associated with economically important traits in dairy goats. Cogent Food & Agriculture, 8(1), 2149131, 1-39.
  • Ghoreishi, H., Fathi-Yosefabad, S., Shayegh, J., & Barzegari, A. (2019). Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Archives Animal Breeding, 62(2), 565-570.
  • Harter, C. J., Kavanagh, G. S., & Smith, J. (2018). The role of kisspeptin neurons in reproduction and metabolism. The Journal of endocrinology, 238, 3, R173-R183.
  • He, Y., Ma, X., Liu, X., Zhang, C., & Li, J. (2010). Candidate genes polymorphism and its association to prolificacy in Chinese goats. Journal of Agricultural Science, 2(1), 88-92.
  • Imaniah, N. H., Susilorini, T. E., Kuswati, K., & Wahyuni, R. D. (2023). GDF9 gene polymorphism and its relation to litter size in East Java Pote goat germplasm. BIO Web of Conferences, The 4th International Conference on Environmentally Sustainable Animal Industry (ICESAI 2023), 81, 7. https://doi.org/10.1051/bioconf/20238100007
  • Islam, M., Basheer, A., Javed, K., Anjum, A., & Zahoor, I. (2019). PCR-RFLP-based identification of polymorphisms in BMPR1B, GDF9, and BMP15 genes associated with litter size in Beetal and Teddy goats. South African Journal of Animal Science, 49, 697.
  • Jassim, A., & Al-Azzawi, S. H. (2022). Estimation of genetic variance based on the growth differentiation factor 9 (GDF9) gene and its association with semen quality in local Iraqi goats. Diyala Agricultural Sciences Journal, 14, 14-20.
  • Jih, M. H., & Wu, T. C. J. (1995). Altered regulation of pituitary luteinizing hormone secretion by GnRH and inhibin in the aged persistent-estrous female rat. Mechanisms of Ageing and Development, 84, 15–27.
  • Juengel, J. L., Hudson, N. L., Heath, D. A., Smith, P., Reader, K. L., Lawrence, S. B., O’Connell, A. R., Laitinen, M. P., Cranfield, M., Groome, N. P., Ritvos, O., & McNatty, K. P. (2002). Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular developmentin sheep. Biology of Reproduction, 67(6), 1777-1789.
  • Kaymakçı, M. (2006). Keçi Yetiştiriciliği. İzmir ili damızlık koyun-keçi yetiştiricileri birliği yayınları, No:2. Bornova-İzmir, Türkiye.
  • Kaymakçı, M., Koşum, N., Taşkın, T. & Akbaş, Y. (2006). Menemen koyunlarında kimi verim özelliklerinin belirlenmesi üzerine bir araştırma. Ege Üniversitesi Ziraat Fakültesi Dergisi 43, 63-74.
  • Mahmoudi, P., Rashidi, A., Rostamzadeh, J., & Razmkabir, M. (2019). Association between c.1189G>A. Reproduction Science, 209, 106140.
  • Moore, R.K., & Shimasaki, S. (2005). Molecular biology and physiological role of the oocyte factor, BMP-15. Molecular Cell Endocrinology, 234(1-2), 67-73.
  • Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., Masuda, Y., Ishibashi, Y., Watanabe, T., Asada, M., Yamada, T., Suenaga, M., Kitada, C., Usuki, S., Kurokawa, T., Onda, H., Nishimura, O., & Fujino, M. (2001). Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 411, 613-617.
  • Paulini, F., & de Oliveira Melo, E. (2011). The role of oocyte-secreted factors GDF9 and BMP15 in follicular development and oogenesis. Reproduction in domestic animals = Zuchthygiene, 46(2), 354-361.
  • Primrose, S. B. & Twyman, R. M. (2006). Principles of gene manipulation and genomics. 7th edition. Malden-Blackwell, United States of America.
  • Pringle, H. (1998). Neolithic agriculture:reading the signs of ancient animal domestication. Sciences, 282, 1448. Polley, S., De, S., Batabyal, S., Kaushik, R., Yadav, P., Arora, J. S., et al. (2009). Polymorphism of fecundity genes (BMPR1B, BMP15 and GDF9) in the Indian prolific Black Bengal goat. Small Ruminant Research, 85(2-3), 122-129.
  • Porter, V. (1996). Goats of the world. Farming pres. Ipswich, United Kingdom. Rahawy, M. A., & Al-Mutar, H. A. (2021). Association of the KiSS1 gene with litter size in Cyprus and Iraqi black goats. Veterinary World, 14, 1995-2001.
  • Rumanta, M., Kunda, R. M., Volkandari, S. D., & Munir, I. M., (2023). Impact of Environmental Geographic toward Point Mutations in Exon 1 of Growth Differentiation Factor (GDF9) Gene in Kosta and Lakor Goat Breeds. Jurnal Penelitian Pendidikan IPA, 9(6), 4813-4819.
  • Sankhyan, V., Thakur, Y. P., & Dogra, P. K. (2020). Association of kisspeptin gene (KISS1) with litter size in migratory Gaddi goats in western Himalayan state of Himachal Pradesh. The Indian Journal of Animal Sciences. 89(12), 1352-1355.
  • Schrooten, C., Bovenhuis, H., Coppieters, W., & Van Arendonk, J. A. M. (1999). Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. Journal of Dairy Science. 83, 795-806.
  • Shaha, M., Miah, G., Lima, A., Miazi, O. F., Gupta, M. D., & Das, A. (2022). Identification of polymorphisms in GDF9 and BMP15 genes in Jamunapari and crossbred goats in Bangladesh. Tropical Animal Health and Production, 54(6), 350.
  • Sharma, A., Dutt, G., Jayakumar, S., Saroha, V., & Verma, N. K., 2013. Genetic structuring of nine Indian domestic goat breeds based on SNPs identified in IGF-1 gene. Animal Biotechnology, 24, 148-157.
  • Shokrollahi, B. (2015). Investigation of BMP15 gene polymorphisms associated with twining in Markhoz goat. Biharean Biologist, 9, 1-4.
  • Turkish Statistical Institute. (2024). Homepage. Turkish Statistical Institute. Retrieved May 2024, from http://www.tuik.gov.tr/Start.do
  • Wang, X., Yang, Q., Wang, K., Yan, H., Pan, C., Chen, H., et al. (2019). Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology, 125, 115–121.
  • Wang, X., Yang, Q., Zhang, S., Zhang, X., Pan, C., Chen, H., Zhu, H., & Lan, X. (2019). Genetic effects of single nucleotide polymorphisms in the goat GDF9 gene on prolificacy: True or false positive? Animals (Basel), 9(11), 886.
  • Wang, Y.Q., Li, Y.X., Zhang, N., Wang, Z.B., & Bai, J.Y. (2011). Polymorphism of exon 2 of BMP15 gene and its relationship with litter size of two Chinese goats. Asian-Australasian Journal of Animal Sciences, 24(7), 905-911. Weikard, R., Kühn, C., Goldammer, T., Freyer, G. & Schwerin, M. (2004). The bovine PPARGC1A gene: molecular charaterization and association of an SNP with variation of milk fat synthesis. Physiological Genomics. 21, 1-13.
  • Weller, J. I. (2009). Quantitative trait loci analysis in animals. Modular Texts. Cambridge, United States of America.
  • West, A., Vojta, P. J., Welch, D. R., & Weissman, B. E. (1998). Chromosome localization and genomic structure of the KiSS1 metastasis suppressor gene (KiSS1). Genomics, 54, 145-148.
  • World Population Review. (2021). Goat Population by Country. World Population. Retrieved May 2024 from https://worldpopulationreview.com/country-rankings/goat-population-by-country
  • Yeo, S. & College, W. H. (2018). The role of KiSS 1 neurons as integrators of endocrine, metabolic, and environmental factors in the hypothalamic–pituitary–gonadal axis. Frontiers in Endocrinology, 9(188), 1-13.
  • Zeder, M. A., & Hesse, B. (2000). The initial domestication of goats (Capra hircus) in the Zagros Mountain 10000 years ago. Science. 287, 2254-2257.
There are 47 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences (Other)
Journal Section Review Articles
Authors

Berk Ozcan Atalay 0000-0002-1749-0638

Atila Ateş 0000-0002-9013-930X

Publication Date August 31, 2024
Submission Date May 26, 2024
Acceptance Date July 25, 2024
Published in Issue Year 2024

Cite

APA Atalay, B. O., & Ateş, A. (2024). The effects of KISS1, GDF9 and BMP15 genes on reproductive traits in goats: A review. Journal of Istanbul Veterinary Sciences, 8(2), 172-177. https://doi.org/10.30704/http-www-jivs-net.1489927

Bu dergi Creative Commons attribution 4.0 international  (CC-BY 4.0). lisansı ile lisanslanmıştır.