Review
BibTex RIS Cite

CRISPR-cas technology and use in antiviral development

Year 2024, , 195 - 206, 31.08.2024
https://doi.org/10.30704/http-www-jivs-net.1497783

Abstract

Throughout history, viral diseases have periodically reached pandemic proportions and have had devastating effects on human history. With the advancement of science and technology, antivirals have been developed and continue to be developed in the fight against viral diseases. The difficulty in the development of antirival has tried to use new technologies in the development of antiviral. One of these new technologies is the CRISPR/Cas system. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) defines a series of DNA sequences called clusters of regularly interspaced palindromic repeats, and CAS defines endonucleases that use CRISPR sequences as a guide to recognize and cut specific DNA chains related to the CRISPR region. While protein engineering systems defined before CRISPR/Cas systems can be off-target and cause undesirable results, the CRISPR/Cas system reduces this risk by Watson-Crick base pairing. In the fight against viral infections of humans and animals, vaccine protection methods are widely used due to the problems in developing antivirals. On the other hand, the difficulty of vaccination, inadequacies in long-term immunity and the emergence of new infections or epidemics due to mutational changes in viruses pave the way for developing new antivirals. This article emphasizes the history and working areas of CRISPR-Cas technology and the potential applications of this method in antiviral development for human and animal viruses

References

  • Abbott, T. R., Dhamdhere, G., Liu, Y., Lin, X., Goudy, L., Zeng, L., Chemparathy, A., Chmura, S., Heaton, N. S., Debs, R., Pande, T., Endy, D., La Russa, M. F., Lewis, D. B., & Qi, L. S. (2020). Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell, 181(4), 865-876.
  • Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712.
  • Bayat, H., Naderi, F., Khan, A. H., Memarnejadian, A., & Rahimpour, A. (2018). The impact of CRISPR-Cas system on antiviral therapy. Advanced Pharmaceutical Bulletin, 8(4), 591-597.
  • Bikard, D., & Marraffini, L. A. (2012). Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Current Opinion in Immunology, 24(1), 15-20.
  • Billon, P., Bryant, E. E., Joseph, S. A., Nambiar, T. S., Hayward, S. B., Rothstein, R., & Ciccia, A. (2017). CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Molecular Cell, 67(6), 1068-1079.e4.
  • Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: Customizable proteins for DNA targeting. Science, 333(6051), 1843-1846.
  • Cai, C., Wang, X., Zhao, Y., Yi, C., Jin, Z., Zhang, A., & Han, L. (2019). Construction of a mavs-inactivated MDCK cell line for facilitating the propagation of canine distemper virus (CDV). Molecular Immunology, 114, 133-138.
  • Chou, Y., Krupp, A., Kaynor, C., Gaudin, R., Ma, M., Cahir-McFarland, E., & Kirchhausen, T. (2016). Inhibition of JCPyV infection mediated by targeted viral genome editing using CRISPR/Cas9. Scientific Reports, 6(1), 36921.
  • Chulanov, V., Kostyusheva, A., Brezgin, S., Ponomareva, N., Gegechkori, V., Volchkova, E., Pimenov, N., & Kostyushev, D. (2021). CRISPR Screening: Molecular Tools for Studying Virus-Host Interactions. Viruses, 13(11), 2258.
  • Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823.
  • Cross Ryan. (2018, July 1). CRISPR researchers receive Kavli Prize in Nanoscience. cen.asc.org/biological-chemistry/biotechnology/CRISPR-researchers-recive-Kavli-Prize/96/web/2018/06
  • Dai, H., Wu, J., Yang, H., Guo, Y., Di, H., Gao, M., & Wang, J. (2022). Construction of BHV-1 UL41 defective virus using the CRISPR/Cas9 system and analysis of viral replication properties. Frontiers in Cellular and Infection Microbiology, 12, 942987.
  • Das, A., Barrientos, R., Shiota, T., Madigan, V., Misumi, I., McKnight, K. L., Sun, L., Li, Z., Meganck, R. M., Li, Y., Kaluzna, E., Asokan, A., Whitmire, J. K., Kapustina, M., Zhang, Q., & Lemon, S. M. (2020). Gangliosides are essential endosomal receptors for quasi-enveloped and naked hepatitis A virus. Nature Microbiology, 5(9), 1069–1078.
  • de Wilde, A. H., Zevenhoven-Dobbe, J. C., Beugeling, C., Chatterji, U., de Jong, D., Gallay, P., Szuhai, K., Posthuma, C. C., & Snijder, E. J. (2018). Coronaviruses and arteriviruses display striking differences in their cyclophilin A-dependence during replication in cell culture. Virology, 517, 148-156.
  • Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340), 602-607.
  • Deveau, H., Barrangou, R., Garneau, J. E., Labonté, J., Fremaux, C., Boyaval, P., Romero, D. A., Horvath, P., & Moineau, S. (2008). Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus. Journal of Bacteriology, 190(4), 1390-1400.
  • Ding, S., Diep, J., Feng, N., Ren, L., Li, B., Ooi, Y. S., Wang, X., Brulois, K. F., Yasukawa, L. L., Li, X., Kuo, C. J., Solomon, D. A., Carette, J. E., & Greenberg, H. B. (2018). STAG2 deficiency induces interferon responses via cGAS-STING pathway and restricts virus infection. Nature Communications, 9(1), 1485.
  • Fang, J., Liu, J., Cheng, N., Kang, X., Huang, Z., Wang, G., Xiong, X., Lu, T., Gong, Z., Huang, Z., Che, J., & Xiang, T. (2023). Four thermostatic steps: A novel CRISPR-Cas12-based system for the rapid at-home detection of respiratory pathogens. Applied Microbiology and Biotechnology, 107(12), 3983-3996.
  • Ganaie, S. S., Schwarz, M. M., McMillen, C. M., Price, D. A., Feng, A. X., Albe, J. R., Wang, W., Miersch, S., Orvedahl, A., Cole, A. R., Sentmanat, M. F., Mishra, N., Boyles, D. A., Koenig, Z. T., Kujawa, M. R., Demers, M. A., Hoehl, R. M., Moyle, A. B., Wagner, N. D., … Hartman, A. L. (2021). Lrp1 is a host entry factor for Rift Valley fever virus. Cell, 184(20), 5163-5178.e24.
  • Garneau, J. E., Dupuis, M.-È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H., & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67-71.
  • Gök, G., & Tunalı, Ç. (2016). CRISPR-Cas İmmün siteminin biyolojisi, mekanizması ve kullanım alanları. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 8(2), 11-23. Gong, Y., Chen, T., Feng, N., Meng, X., Sun, W., Wang, T., Zhao, Y., Yang, S., Song, X., Li, W., Dong, H., Wang, H., He, H., Wang, J., Zhang, L., Gao, Y., & Xia, X. (2020). A highly efficient recombinant canarypox virus-based vaccine against canine distemper virus constructed using the CRISPR/Cas9 gene editing method. Veterinary Microbiology, 251, 108920.
  • Gradauskaite, V., Inglebert, M., Doench, J., Scherer, M., Dettwiler, M., Wyss, M., Shrestha, N., Rottenberg, S., & Plattet, P. (2023). LRP6 Is a Functional receptor for Attenuated canine distemper virus. MBio, 14(1), e0311422. Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 1(6), e60.
  • Hassanien, R. T., Thieulent, C. J., Carossino, M., Li, G., & Balasuriya, U. B. R. (2024). Modulation of equid herpesvirus-1 replication dynamics in vitro using CRISPR/Cas9-Assisted genome editing. Viruses, 16(3), 409.
  • Helfer-Hungerbuehler, A. K., Shah, J., Meili, T., Boenzli, E., Li, P., & Hofmann-Lehmann, R. (2021). Adeno-associated vector-delivered CRISPR/SaCas9 system reduces feline leukemia virus production in vitro. Viruses, 13(8), 1636.
  • Herrera-Carrillo, E., Gao, Z., & Berkhout, B. (2020). CRISPR therapy towards an HIV cure. Briefings in Functional Genomics, 19(3), 201-208.
  • Huang, J., Liu, Y., He, Y., Yang, X., & Li, Y. (2022). CRISPR-Cas13a based visual detection assays for feline calicivirus circulating in southwest China. Frontiers in Veterinary Science, 9, 913780.
  • Huang, Z., Tomitaka, A., Raymond, A., & Nair, M. (2017). Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS. Gene Therapy, 24(7), 377-384.
  • Hoffmann, H. H., Schneider, W. M., Rozen-Gagnon, K., Miles L. A. , Schuster, F., Razooky, B., Jacobson, E., Wu, X., Yi, S., Rudin, C. M., MacDonald, M. R., McMullan, L. K., Poirier, J. T., Rice, C. M. (2021). TMEM41B is a pan-flavivirus host factor. Cell, 184(1), 133-148.
  • Hosmillo, M., Lu, J., McAllaster, M. R., Eaglesham, J. B., Wang, X., Emmott, E., Domingues, P., Chaudhry, Y., Fitzmaurice, T. J., Tung, M. K., Panas, M. D., McInerney, G., Locker, N., Wilen, C. B., Goodfellow, I. G. (2019). Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation. Elife. 8, e46681.
  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429-5433.
  • Jansen, Ruud., Embden, Jan. D. A. van, Gaastra, Wim., & Schouls, Leo. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43(6), 1565-1575.
  • Jiang, F., & Doudna, J. A. (2015). The structural biology of CRISPR-Cas systems. Current Opinion in Structural Biology, 30, 100–111.
  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.
  • Kennedy, E. M., Kornepati, A. V. R., Goldstein, M., Bogerd, H. P., Poling, B. C., Whisnant, A. W., Kastan, M. B., & Cullen, B. R. (2014). Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. Journal of Virology, 88(20), 11965–11972.
  • Kılıç Tosun, Ö., & Kesmen, Z. (2022). CRISPR-cas uygulamaları, potansiyel riskler ve yasal düzenlemeler. Helal ve Etik Araştırmalar Dergisi, 4(2), 11-42.
  • Kuscu, C., Parlak, M., Tufan, T., Yang, J., Szlachta, K., Wei, X., Mammadov, R., & Adli, M. (2017). CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nature Methods, 14(7), 710-712.
  • Labeau, A., Simon-Loriere, E., Hafirassou, M.-L., Bonnet-Madin, L., Tessier, S., Zamborlini, A., Dupré, T., Seta, N., Schwartz, O., Chaix, M.-L., Delaugerre, C., Amara, A., & Meertens, L. (2020). A Genome-wide CRISPR-Cas9 screen identifies the dolichol-phosphate mannose synthase complex as a host dependency factor for dengue virus infection. Journal of Virology, 94(7), 1128.
  • Li, K., Liu, Y., Xu, Z., Zhang, Y., Yao, Y., Nair, V., Liu, C., Zhang, Y., Gao, Y., Qi, X., Cui, H., Gao, L., & Wang, X. (2020). Prevention of avian retrovirus infection in chickens using CRISPR-Cas9 delivered by Marek’s disease virus. molecular therapy. Nucleic Acids, 21, 343-353.
  • Li, Z., Hajian, C., & Greene, W. C. (2020). Identification of unrecognized host factors promoting HIV-1 latency. PLOS Pathogens, 16(12), e1009055.
  • Liao, H.-K., Gu, Y., Diaz, A., Marlett, J., Takahashi, Y., Li, M., Suzuki, K., Xu, R., Hishida, T., Chang, C.-J., Esteban, C. R., Young, J., & Belmonte, J. C. I. (2015). Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nature Communications, 6(1), 6413.
  • Lin, D. L., Cherepanova, N. A., Bozzacco, L., MacDonald, M. R., Gilmore, R., & Tai, A. W. (2017). Dengue virus hijacks a noncanonical oxidoreductase function of a cellular oligosaccharyltransferase complex. MBio, 8(4).10-1128.
  • Liu, Y., Xu, Z., Zhang, Y., Yu, M., Wang, S., Gao, Y., Liu, C., Zhang, Y., Gao, L., Qi, X., Cui, H., Pan, Q., Li, K., & Wang, X. (2020). Marek’s disease virus as a CRISPR/Cas9 delivery system to defend against avian leukosis virus infection in chickens. Veterinary Microbiology, 242, 108589.
  • Luo, J., Teng, M., Zai, X., Tang, N., Zhang, Y., Mandviwala, A., Reddy, V. R. A. P., Baigent, S., Yao, Y., & Nair, V. (2020). Efficient mutagenesis of Marek’s disease virus-encoded microRNAs Using a CRISPR/Cas9-based gene editing system. Viruses, 12(4), 466.
  • Ma, Z., Bai, J., Jiang, C., Zhu, H., Liu, D., Pan, M., Wang, X., Pi, J., Jiang, P., & Liu, X. (2023). Tegument protein UL21 of alpha-herpesvirus inhibits the innate immunity by triggering CGAS degradation through TOLLIP-mediated selective autophagy. Autophagy, 19(5), 1512-1532.
  • McLaurin, K. A., Li, H., Khalili, K., Mactutus, C. F., & Booze, R. M. (2024). HIV-1 mRNA knockdown with CRISPR/CAS9 enhances neurocognitive function. Journal of Neurovirology, 30(1), 71-85.
  • Mohanraju, P., Makarova, K. S., Zetsche, B., Zhang, F., Koonin, E. V., & van der Oost, J. (2016). Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 353(6299), aad5147.
  • Mojica, F. J., Díez-Villaseñor, C., Soria, E., & Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology, 36(1), 244-246.
  • Mojica, F. J., Ferrer, C., Juez, G., & Rodríguez-Valera, F. (1995). Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Molecular Microbiology, 17(1), 85-93.
  • Mojica, F. J., Juez, G., & Rodríguez-Valera, F. (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular Microbiology, 9(3), 613-621.
  • Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J., &  Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60(2), 174–182.
  • Nobel Prize. (2020, October 7). The Royal Swedish Academy of Science has  decided to award to Nobel  Prize in Chemistry  2020 to Emmanuel Carpentier and Jennifer A. Doudna ‘for development of a method for genome editing’. The Nobel Prize. nobelprize.org/prizes/chemistry/2020/press-release
  • Ohlson, M. B., Eitson, J. L., Wells, A. I., Kumar, A., Jang, S., Ni, C., Xing, C., Buszczak, M., & Schoggins, J. W. (2023). Genome-Scale CRISPR Screening reveals host factors required for ribosome formation and viral replication. MBio, 14(2), e0012723.
  • Ophinni, Y., Inoue, M., Kotaki, T., & Kameoka, M. (2018). CRISPR/Cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures. Scientific Reports, 8(1), 7784.
  • Orchard, R. C., Sullender, M. E., Dunlap, B. F., Balce, D. R., Doench, J. G., & Virgin, H. W. (2019). Identification of antinorovirus genes in human cells using genome-wide CRISPR activation screening. Journal of Virology, 93(1), 10.1128.
  • Park, R. J., Wang, T., Koundakjian, D., Hultquist, J. F., Lamothe-Molina, P., Monel, B., Schumann, K., Yu, H., Krupzcak, K. M., Garcia-Beltran, W., Piechocka-Trocha, A., Krogan, N. J., Marson, A., Sabatini, D. M., Lander, E. S., Hacohen, N., & Walker, B. D. (2017). A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nature Genetics, 49(2), 193-203.
  • Pourcel, C., Salvignol, G., & Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151(3), 653-663.
  • Puschnik, A. S., Majzoub, K., Ooi, Y. S., & Carette, J. E. (2017). A CRISPR toolbox to study virus–host interactions. Nature Reviews Microbiology, 15(6), 351-364.
  • Ran, F. A., Hsu, P. D., Lin, C.-Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., & Zhang, F. (2013). Double nicking by RNA-guided CRISPR Cas9 for Enhanced Genome Editing Specificity.Shmakov S., Abudayyeh O. O., Makarova K. S., Wolf Y. I., Gootenberg J. S., Semenova E., Minakhin L., Joung J., Konermann S., Severinov K., Zhang F., and Koonin E. V. (2015). Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mollecular Cell, 60, 385-397.
  • Rath, D., Amlinger, L., Rath, A., & Lundgren, M. (2015). The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie, 117, 119-128.
  • Richardson, R. B., Ohlson, M. B., Eitson, J. L., Kumar, A., McDougal, M. B., Boys, I. N., Mar, K. B., De La Cruz-Rivera, P. C., Douglas, C., Konopka, G., Xing, C., & Schoggins, J. W. (2018). A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nature Microbiology, 3(11), 1214-1223.
  • Roehm, P. C., Shekarabi, M., Wollebo, H. S., Bellizzi, A., He, L., Salkind, J., & Khalili, K. (2016). Inhibition of HSV-1 Replication by Gene Editing Strategy. Scientific Reports, 6(1), 23146.
  • Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 39(21), 9275-9282.
  • Senevirathne, A., Hewawaduge, C., & Lee, J. H. (2021). Genetic interference exerted by Salmonella-delivered CRISPR/Cas9 significantly reduces the pathological burden caused by Marek’s disease virus in chickens. Veterinary Research, 52(1), 125.
  • Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I., Gootenberg, J. S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., Zhang, F., and Koonin, E. V.,(2015). Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mollelucalar Cell 60, 385-397.
  • Siegrist, C. M., Kinahan, S. M., Settecerri, T., Greene, A. C., & Santarpia, J. L. (2020). CRISPR/Cas9 as an antiviral against Orthopoxviruses using an AAV vector. Scientific Reports, 10(1), 19307.
  • Singh, M., Misra, C. S., Bindal, G., Rangu, S. S., & Rath, D. (2023). CRISPR-Cas12a assisted specific detection of mpox virus. Journal of Medical Virology, 95(8), e28974.
  • Teng, M., Zhu, Z.-J., Yao, Y., Nair, V., Zhang, G.-P., & Luo, J. (2023). Critical roles of non-coding RNAs in lifecycle and biology of Marek’s disease herpesvirus. Science China. Life Sciences, 66(2), 251-268.
  • Ueda, S., Ebina, H., Kanemura, Y., Misawa, N., & Koyanagi, Y. (2016). Anti‐HIV‐1 potency of the CRISPR/Cas9 system insufficient to fully inhibit viral replication. Microbiology and Immunology, 60(7), 483-496.
  • van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M., & Brouns, S. J. J. (2009). CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences, 34(8), 401-407.
  • van Diemen, F. R., Kruse, E. M., Hooykaas, M. J. G., Bruggeling, C. E., Schürch, A. C., van Ham, P. M., Imhof, S. M., Nijhuis, M., Wiertz, E. J. H. J., & Lebbink, R. J. (2016). CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. Plos Pathogens, 12(6), e1005701.
  • Wei, J., Alfajaro, M. M., DeWeirdt, P. C., Hanna, R. E., Lu-Culligan, W. J., Cai, W. L., Strine, M. S., Zhang, S.-M., Graziano, V. R., Schmitz, C. O., Chen, J. S., Mankowski, M. C., Filler, R. B., Ravindra, N. G., Gasque, V., de Miguel, F. J., Patil, A., Chen, H., Oguntuyo, K. Y., … Wilen, C. B. (2021). Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell, 184(1), 76-91.e13.
  • Wei, Y., Zhao, Z., & Ma, X. (2022). Description of CRISPR-Cas9 development and its prospects in human papillomavirus-driven cancer treatment. Frontiers in Immunology, 13, 1037124.
  • Wollebo, H. S., Bellizzi, A., Kaminski, R., Hu, W., White, M. K., & Khalili, K. (2015). CRISPR/Cas9 System as an Agent for Eliminating Polyomavirus JC Infection. Plos one, 10(9), e0136046.
  • Wu, K., Oberstein, A., Wang, W., & Shenk, T. (2018). Role of PDGF receptor-α during human cytomegalovirus entry into fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 115(42), E9889–E9898. Xie, S., Ji, Z., Suo, T., Li, B., & Zhang, X. (2021). Advancing sensing technology with CRISPR: From the detection of nucleic acids to a broad range of analytes - A review. Analytica Chimica Acta, 1185, 338848.
  • Xu, L., Wang, J., Liu, Y., Xie, L., Su, B., Mou, D., Wang, L., Liu, T., Wang, X., Zhang, B., Zhao, L., Hu, L., Ning, H., Zhang, Y., Deng, K., Liu, L., Lu, X., Zhang, T., Xu, J., … Chen, H. (2019). CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. New England Journal of Medicine, 381(13), 1240-1247.
  • Yu, W., Liu, J., Liu, Y., Forlenza, M., & Chen, H. (2024). Application of CRISPR/Cas9 for rapid genome editing of pseudorabies virus and bovine herpesvirus-1. Viruses, 16, (2), 311.
  • Zhang, Y., Luo, J., Tang, N., Teng, M., Reddy, V. R. A. P., Moffat, K., Shen, Z., Nair, V., & Yao, Y. (2019). Targeted editing of the pp38 gene in Marek’s disease virus-transformed cell lines using CRISPR/Cas9 system. Viruses, 11(5), 391.
  • Zhang, Y., Wu, Y., Wu, Y., Chang, Y., & Liu, M. (2021). CRISPR-Cas systems: From gene scissors to programmable biosensors. TrAC Trends in Analytical Chemistry, 137, 116210.
  • Zhao, C., Gao, J., Wang, Y., Ji, L., Qin, H., Hu, W., & Yang, Y. (2022). A Novel rabies vaccine based on a recombinant bovine herpes virus type 1 expressing rabies virus glycoprotein. Frontiers in Microbiology, 13, 931043.
  • Zhao, F., Hu, Y., Fan, Z., Huang, B., Wei, L., Xie, Y., Huang, Y., Mei, S., Wang, L., Wang, L., Ai, B., Fang, J., Liang, C., Xu, F., Tan, W., & Guo, F. (2023). Rapid and sensitive one-tube detection of mpox virus using RPA-coupled CRISPR-Cas12 assay. Cell Reports Methods, 3(10), 100620.
  • Zhen, S., Hua, L., Takahashi, Y., Narita, S., Liu, Y.-H., & Li, Y. (2014). In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochemical and Biophysical Research Communications, 450(4), 1422-1426.
Year 2024, , 195 - 206, 31.08.2024
https://doi.org/10.30704/http-www-jivs-net.1497783

Abstract

References

  • Abbott, T. R., Dhamdhere, G., Liu, Y., Lin, X., Goudy, L., Zeng, L., Chemparathy, A., Chmura, S., Heaton, N. S., Debs, R., Pande, T., Endy, D., La Russa, M. F., Lewis, D. B., & Qi, L. S. (2020). Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell, 181(4), 865-876.
  • Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712.
  • Bayat, H., Naderi, F., Khan, A. H., Memarnejadian, A., & Rahimpour, A. (2018). The impact of CRISPR-Cas system on antiviral therapy. Advanced Pharmaceutical Bulletin, 8(4), 591-597.
  • Bikard, D., & Marraffini, L. A. (2012). Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Current Opinion in Immunology, 24(1), 15-20.
  • Billon, P., Bryant, E. E., Joseph, S. A., Nambiar, T. S., Hayward, S. B., Rothstein, R., & Ciccia, A. (2017). CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Molecular Cell, 67(6), 1068-1079.e4.
  • Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: Customizable proteins for DNA targeting. Science, 333(6051), 1843-1846.
  • Cai, C., Wang, X., Zhao, Y., Yi, C., Jin, Z., Zhang, A., & Han, L. (2019). Construction of a mavs-inactivated MDCK cell line for facilitating the propagation of canine distemper virus (CDV). Molecular Immunology, 114, 133-138.
  • Chou, Y., Krupp, A., Kaynor, C., Gaudin, R., Ma, M., Cahir-McFarland, E., & Kirchhausen, T. (2016). Inhibition of JCPyV infection mediated by targeted viral genome editing using CRISPR/Cas9. Scientific Reports, 6(1), 36921.
  • Chulanov, V., Kostyusheva, A., Brezgin, S., Ponomareva, N., Gegechkori, V., Volchkova, E., Pimenov, N., & Kostyushev, D. (2021). CRISPR Screening: Molecular Tools for Studying Virus-Host Interactions. Viruses, 13(11), 2258.
  • Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823.
  • Cross Ryan. (2018, July 1). CRISPR researchers receive Kavli Prize in Nanoscience. cen.asc.org/biological-chemistry/biotechnology/CRISPR-researchers-recive-Kavli-Prize/96/web/2018/06
  • Dai, H., Wu, J., Yang, H., Guo, Y., Di, H., Gao, M., & Wang, J. (2022). Construction of BHV-1 UL41 defective virus using the CRISPR/Cas9 system and analysis of viral replication properties. Frontiers in Cellular and Infection Microbiology, 12, 942987.
  • Das, A., Barrientos, R., Shiota, T., Madigan, V., Misumi, I., McKnight, K. L., Sun, L., Li, Z., Meganck, R. M., Li, Y., Kaluzna, E., Asokan, A., Whitmire, J. K., Kapustina, M., Zhang, Q., & Lemon, S. M. (2020). Gangliosides are essential endosomal receptors for quasi-enveloped and naked hepatitis A virus. Nature Microbiology, 5(9), 1069–1078.
  • de Wilde, A. H., Zevenhoven-Dobbe, J. C., Beugeling, C., Chatterji, U., de Jong, D., Gallay, P., Szuhai, K., Posthuma, C. C., & Snijder, E. J. (2018). Coronaviruses and arteriviruses display striking differences in their cyclophilin A-dependence during replication in cell culture. Virology, 517, 148-156.
  • Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340), 602-607.
  • Deveau, H., Barrangou, R., Garneau, J. E., Labonté, J., Fremaux, C., Boyaval, P., Romero, D. A., Horvath, P., & Moineau, S. (2008). Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus. Journal of Bacteriology, 190(4), 1390-1400.
  • Ding, S., Diep, J., Feng, N., Ren, L., Li, B., Ooi, Y. S., Wang, X., Brulois, K. F., Yasukawa, L. L., Li, X., Kuo, C. J., Solomon, D. A., Carette, J. E., & Greenberg, H. B. (2018). STAG2 deficiency induces interferon responses via cGAS-STING pathway and restricts virus infection. Nature Communications, 9(1), 1485.
  • Fang, J., Liu, J., Cheng, N., Kang, X., Huang, Z., Wang, G., Xiong, X., Lu, T., Gong, Z., Huang, Z., Che, J., & Xiang, T. (2023). Four thermostatic steps: A novel CRISPR-Cas12-based system for the rapid at-home detection of respiratory pathogens. Applied Microbiology and Biotechnology, 107(12), 3983-3996.
  • Ganaie, S. S., Schwarz, M. M., McMillen, C. M., Price, D. A., Feng, A. X., Albe, J. R., Wang, W., Miersch, S., Orvedahl, A., Cole, A. R., Sentmanat, M. F., Mishra, N., Boyles, D. A., Koenig, Z. T., Kujawa, M. R., Demers, M. A., Hoehl, R. M., Moyle, A. B., Wagner, N. D., … Hartman, A. L. (2021). Lrp1 is a host entry factor for Rift Valley fever virus. Cell, 184(20), 5163-5178.e24.
  • Garneau, J. E., Dupuis, M.-È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H., & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67-71.
  • Gök, G., & Tunalı, Ç. (2016). CRISPR-Cas İmmün siteminin biyolojisi, mekanizması ve kullanım alanları. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 8(2), 11-23. Gong, Y., Chen, T., Feng, N., Meng, X., Sun, W., Wang, T., Zhao, Y., Yang, S., Song, X., Li, W., Dong, H., Wang, H., He, H., Wang, J., Zhang, L., Gao, Y., & Xia, X. (2020). A highly efficient recombinant canarypox virus-based vaccine against canine distemper virus constructed using the CRISPR/Cas9 gene editing method. Veterinary Microbiology, 251, 108920.
  • Gradauskaite, V., Inglebert, M., Doench, J., Scherer, M., Dettwiler, M., Wyss, M., Shrestha, N., Rottenberg, S., & Plattet, P. (2023). LRP6 Is a Functional receptor for Attenuated canine distemper virus. MBio, 14(1), e0311422. Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 1(6), e60.
  • Hassanien, R. T., Thieulent, C. J., Carossino, M., Li, G., & Balasuriya, U. B. R. (2024). Modulation of equid herpesvirus-1 replication dynamics in vitro using CRISPR/Cas9-Assisted genome editing. Viruses, 16(3), 409.
  • Helfer-Hungerbuehler, A. K., Shah, J., Meili, T., Boenzli, E., Li, P., & Hofmann-Lehmann, R. (2021). Adeno-associated vector-delivered CRISPR/SaCas9 system reduces feline leukemia virus production in vitro. Viruses, 13(8), 1636.
  • Herrera-Carrillo, E., Gao, Z., & Berkhout, B. (2020). CRISPR therapy towards an HIV cure. Briefings in Functional Genomics, 19(3), 201-208.
  • Huang, J., Liu, Y., He, Y., Yang, X., & Li, Y. (2022). CRISPR-Cas13a based visual detection assays for feline calicivirus circulating in southwest China. Frontiers in Veterinary Science, 9, 913780.
  • Huang, Z., Tomitaka, A., Raymond, A., & Nair, M. (2017). Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS. Gene Therapy, 24(7), 377-384.
  • Hoffmann, H. H., Schneider, W. M., Rozen-Gagnon, K., Miles L. A. , Schuster, F., Razooky, B., Jacobson, E., Wu, X., Yi, S., Rudin, C. M., MacDonald, M. R., McMullan, L. K., Poirier, J. T., Rice, C. M. (2021). TMEM41B is a pan-flavivirus host factor. Cell, 184(1), 133-148.
  • Hosmillo, M., Lu, J., McAllaster, M. R., Eaglesham, J. B., Wang, X., Emmott, E., Domingues, P., Chaudhry, Y., Fitzmaurice, T. J., Tung, M. K., Panas, M. D., McInerney, G., Locker, N., Wilen, C. B., Goodfellow, I. G. (2019). Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation. Elife. 8, e46681.
  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429-5433.
  • Jansen, Ruud., Embden, Jan. D. A. van, Gaastra, Wim., & Schouls, Leo. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43(6), 1565-1575.
  • Jiang, F., & Doudna, J. A. (2015). The structural biology of CRISPR-Cas systems. Current Opinion in Structural Biology, 30, 100–111.
  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.
  • Kennedy, E. M., Kornepati, A. V. R., Goldstein, M., Bogerd, H. P., Poling, B. C., Whisnant, A. W., Kastan, M. B., & Cullen, B. R. (2014). Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. Journal of Virology, 88(20), 11965–11972.
  • Kılıç Tosun, Ö., & Kesmen, Z. (2022). CRISPR-cas uygulamaları, potansiyel riskler ve yasal düzenlemeler. Helal ve Etik Araştırmalar Dergisi, 4(2), 11-42.
  • Kuscu, C., Parlak, M., Tufan, T., Yang, J., Szlachta, K., Wei, X., Mammadov, R., & Adli, M. (2017). CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nature Methods, 14(7), 710-712.
  • Labeau, A., Simon-Loriere, E., Hafirassou, M.-L., Bonnet-Madin, L., Tessier, S., Zamborlini, A., Dupré, T., Seta, N., Schwartz, O., Chaix, M.-L., Delaugerre, C., Amara, A., & Meertens, L. (2020). A Genome-wide CRISPR-Cas9 screen identifies the dolichol-phosphate mannose synthase complex as a host dependency factor for dengue virus infection. Journal of Virology, 94(7), 1128.
  • Li, K., Liu, Y., Xu, Z., Zhang, Y., Yao, Y., Nair, V., Liu, C., Zhang, Y., Gao, Y., Qi, X., Cui, H., Gao, L., & Wang, X. (2020). Prevention of avian retrovirus infection in chickens using CRISPR-Cas9 delivered by Marek’s disease virus. molecular therapy. Nucleic Acids, 21, 343-353.
  • Li, Z., Hajian, C., & Greene, W. C. (2020). Identification of unrecognized host factors promoting HIV-1 latency. PLOS Pathogens, 16(12), e1009055.
  • Liao, H.-K., Gu, Y., Diaz, A., Marlett, J., Takahashi, Y., Li, M., Suzuki, K., Xu, R., Hishida, T., Chang, C.-J., Esteban, C. R., Young, J., & Belmonte, J. C. I. (2015). Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nature Communications, 6(1), 6413.
  • Lin, D. L., Cherepanova, N. A., Bozzacco, L., MacDonald, M. R., Gilmore, R., & Tai, A. W. (2017). Dengue virus hijacks a noncanonical oxidoreductase function of a cellular oligosaccharyltransferase complex. MBio, 8(4).10-1128.
  • Liu, Y., Xu, Z., Zhang, Y., Yu, M., Wang, S., Gao, Y., Liu, C., Zhang, Y., Gao, L., Qi, X., Cui, H., Pan, Q., Li, K., & Wang, X. (2020). Marek’s disease virus as a CRISPR/Cas9 delivery system to defend against avian leukosis virus infection in chickens. Veterinary Microbiology, 242, 108589.
  • Luo, J., Teng, M., Zai, X., Tang, N., Zhang, Y., Mandviwala, A., Reddy, V. R. A. P., Baigent, S., Yao, Y., & Nair, V. (2020). Efficient mutagenesis of Marek’s disease virus-encoded microRNAs Using a CRISPR/Cas9-based gene editing system. Viruses, 12(4), 466.
  • Ma, Z., Bai, J., Jiang, C., Zhu, H., Liu, D., Pan, M., Wang, X., Pi, J., Jiang, P., & Liu, X. (2023). Tegument protein UL21 of alpha-herpesvirus inhibits the innate immunity by triggering CGAS degradation through TOLLIP-mediated selective autophagy. Autophagy, 19(5), 1512-1532.
  • McLaurin, K. A., Li, H., Khalili, K., Mactutus, C. F., & Booze, R. M. (2024). HIV-1 mRNA knockdown with CRISPR/CAS9 enhances neurocognitive function. Journal of Neurovirology, 30(1), 71-85.
  • Mohanraju, P., Makarova, K. S., Zetsche, B., Zhang, F., Koonin, E. V., & van der Oost, J. (2016). Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 353(6299), aad5147.
  • Mojica, F. J., Díez-Villaseñor, C., Soria, E., & Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology, 36(1), 244-246.
  • Mojica, F. J., Ferrer, C., Juez, G., & Rodríguez-Valera, F. (1995). Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Molecular Microbiology, 17(1), 85-93.
  • Mojica, F. J., Juez, G., & Rodríguez-Valera, F. (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular Microbiology, 9(3), 613-621.
  • Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J., &  Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60(2), 174–182.
  • Nobel Prize. (2020, October 7). The Royal Swedish Academy of Science has  decided to award to Nobel  Prize in Chemistry  2020 to Emmanuel Carpentier and Jennifer A. Doudna ‘for development of a method for genome editing’. The Nobel Prize. nobelprize.org/prizes/chemistry/2020/press-release
  • Ohlson, M. B., Eitson, J. L., Wells, A. I., Kumar, A., Jang, S., Ni, C., Xing, C., Buszczak, M., & Schoggins, J. W. (2023). Genome-Scale CRISPR Screening reveals host factors required for ribosome formation and viral replication. MBio, 14(2), e0012723.
  • Ophinni, Y., Inoue, M., Kotaki, T., & Kameoka, M. (2018). CRISPR/Cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures. Scientific Reports, 8(1), 7784.
  • Orchard, R. C., Sullender, M. E., Dunlap, B. F., Balce, D. R., Doench, J. G., & Virgin, H. W. (2019). Identification of antinorovirus genes in human cells using genome-wide CRISPR activation screening. Journal of Virology, 93(1), 10.1128.
  • Park, R. J., Wang, T., Koundakjian, D., Hultquist, J. F., Lamothe-Molina, P., Monel, B., Schumann, K., Yu, H., Krupzcak, K. M., Garcia-Beltran, W., Piechocka-Trocha, A., Krogan, N. J., Marson, A., Sabatini, D. M., Lander, E. S., Hacohen, N., & Walker, B. D. (2017). A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nature Genetics, 49(2), 193-203.
  • Pourcel, C., Salvignol, G., & Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151(3), 653-663.
  • Puschnik, A. S., Majzoub, K., Ooi, Y. S., & Carette, J. E. (2017). A CRISPR toolbox to study virus–host interactions. Nature Reviews Microbiology, 15(6), 351-364.
  • Ran, F. A., Hsu, P. D., Lin, C.-Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., & Zhang, F. (2013). Double nicking by RNA-guided CRISPR Cas9 for Enhanced Genome Editing Specificity.Shmakov S., Abudayyeh O. O., Makarova K. S., Wolf Y. I., Gootenberg J. S., Semenova E., Minakhin L., Joung J., Konermann S., Severinov K., Zhang F., and Koonin E. V. (2015). Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mollecular Cell, 60, 385-397.
  • Rath, D., Amlinger, L., Rath, A., & Lundgren, M. (2015). The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie, 117, 119-128.
  • Richardson, R. B., Ohlson, M. B., Eitson, J. L., Kumar, A., McDougal, M. B., Boys, I. N., Mar, K. B., De La Cruz-Rivera, P. C., Douglas, C., Konopka, G., Xing, C., & Schoggins, J. W. (2018). A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nature Microbiology, 3(11), 1214-1223.
  • Roehm, P. C., Shekarabi, M., Wollebo, H. S., Bellizzi, A., He, L., Salkind, J., & Khalili, K. (2016). Inhibition of HSV-1 Replication by Gene Editing Strategy. Scientific Reports, 6(1), 23146.
  • Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 39(21), 9275-9282.
  • Senevirathne, A., Hewawaduge, C., & Lee, J. H. (2021). Genetic interference exerted by Salmonella-delivered CRISPR/Cas9 significantly reduces the pathological burden caused by Marek’s disease virus in chickens. Veterinary Research, 52(1), 125.
  • Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I., Gootenberg, J. S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., Zhang, F., and Koonin, E. V.,(2015). Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mollelucalar Cell 60, 385-397.
  • Siegrist, C. M., Kinahan, S. M., Settecerri, T., Greene, A. C., & Santarpia, J. L. (2020). CRISPR/Cas9 as an antiviral against Orthopoxviruses using an AAV vector. Scientific Reports, 10(1), 19307.
  • Singh, M., Misra, C. S., Bindal, G., Rangu, S. S., & Rath, D. (2023). CRISPR-Cas12a assisted specific detection of mpox virus. Journal of Medical Virology, 95(8), e28974.
  • Teng, M., Zhu, Z.-J., Yao, Y., Nair, V., Zhang, G.-P., & Luo, J. (2023). Critical roles of non-coding RNAs in lifecycle and biology of Marek’s disease herpesvirus. Science China. Life Sciences, 66(2), 251-268.
  • Ueda, S., Ebina, H., Kanemura, Y., Misawa, N., & Koyanagi, Y. (2016). Anti‐HIV‐1 potency of the CRISPR/Cas9 system insufficient to fully inhibit viral replication. Microbiology and Immunology, 60(7), 483-496.
  • van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M., & Brouns, S. J. J. (2009). CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences, 34(8), 401-407.
  • van Diemen, F. R., Kruse, E. M., Hooykaas, M. J. G., Bruggeling, C. E., Schürch, A. C., van Ham, P. M., Imhof, S. M., Nijhuis, M., Wiertz, E. J. H. J., & Lebbink, R. J. (2016). CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. Plos Pathogens, 12(6), e1005701.
  • Wei, J., Alfajaro, M. M., DeWeirdt, P. C., Hanna, R. E., Lu-Culligan, W. J., Cai, W. L., Strine, M. S., Zhang, S.-M., Graziano, V. R., Schmitz, C. O., Chen, J. S., Mankowski, M. C., Filler, R. B., Ravindra, N. G., Gasque, V., de Miguel, F. J., Patil, A., Chen, H., Oguntuyo, K. Y., … Wilen, C. B. (2021). Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell, 184(1), 76-91.e13.
  • Wei, Y., Zhao, Z., & Ma, X. (2022). Description of CRISPR-Cas9 development and its prospects in human papillomavirus-driven cancer treatment. Frontiers in Immunology, 13, 1037124.
  • Wollebo, H. S., Bellizzi, A., Kaminski, R., Hu, W., White, M. K., & Khalili, K. (2015). CRISPR/Cas9 System as an Agent for Eliminating Polyomavirus JC Infection. Plos one, 10(9), e0136046.
  • Wu, K., Oberstein, A., Wang, W., & Shenk, T. (2018). Role of PDGF receptor-α during human cytomegalovirus entry into fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 115(42), E9889–E9898. Xie, S., Ji, Z., Suo, T., Li, B., & Zhang, X. (2021). Advancing sensing technology with CRISPR: From the detection of nucleic acids to a broad range of analytes - A review. Analytica Chimica Acta, 1185, 338848.
  • Xu, L., Wang, J., Liu, Y., Xie, L., Su, B., Mou, D., Wang, L., Liu, T., Wang, X., Zhang, B., Zhao, L., Hu, L., Ning, H., Zhang, Y., Deng, K., Liu, L., Lu, X., Zhang, T., Xu, J., … Chen, H. (2019). CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. New England Journal of Medicine, 381(13), 1240-1247.
  • Yu, W., Liu, J., Liu, Y., Forlenza, M., & Chen, H. (2024). Application of CRISPR/Cas9 for rapid genome editing of pseudorabies virus and bovine herpesvirus-1. Viruses, 16, (2), 311.
  • Zhang, Y., Luo, J., Tang, N., Teng, M., Reddy, V. R. A. P., Moffat, K., Shen, Z., Nair, V., & Yao, Y. (2019). Targeted editing of the pp38 gene in Marek’s disease virus-transformed cell lines using CRISPR/Cas9 system. Viruses, 11(5), 391.
  • Zhang, Y., Wu, Y., Wu, Y., Chang, Y., & Liu, M. (2021). CRISPR-Cas systems: From gene scissors to programmable biosensors. TrAC Trends in Analytical Chemistry, 137, 116210.
  • Zhao, C., Gao, J., Wang, Y., Ji, L., Qin, H., Hu, W., & Yang, Y. (2022). A Novel rabies vaccine based on a recombinant bovine herpes virus type 1 expressing rabies virus glycoprotein. Frontiers in Microbiology, 13, 931043.
  • Zhao, F., Hu, Y., Fan, Z., Huang, B., Wei, L., Xie, Y., Huang, Y., Mei, S., Wang, L., Wang, L., Ai, B., Fang, J., Liang, C., Xu, F., Tan, W., & Guo, F. (2023). Rapid and sensitive one-tube detection of mpox virus using RPA-coupled CRISPR-Cas12 assay. Cell Reports Methods, 3(10), 100620.
  • Zhen, S., Hua, L., Takahashi, Y., Narita, S., Liu, Y.-H., & Li, Y. (2014). In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochemical and Biophysical Research Communications, 450(4), 1422-1426.
There are 81 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences (Other)
Journal Section Review Articles
Authors

Zeynep Yolhan Şeflek 0000-0002-2837-0869

Mustafa Hasöksüz 0000-0003-3185-6453

Publication Date August 31, 2024
Submission Date June 7, 2024
Acceptance Date July 7, 2024
Published in Issue Year 2024

Cite

APA Şeflek, Z. Y., & Hasöksüz, M. (2024). CRISPR-cas technology and use in antiviral development. Journal of Istanbul Veterinary Sciences, 8(2), 195-206. https://doi.org/10.30704/http-www-jivs-net.1497783

Bu dergi Creative Commons attribution 4.0 international  (CC-BY 4.0). lisansı ile lisanslanmıştır.