Research Article
BibTex RIS Cite

Kähler-Norden structures on Hom-Lie groups and Hom-Lie algebras

Year 2025, , 213 - 236, 28.02.2025
https://doi.org/10.15672/hujms.1344687

Abstract

The aim of this paper is to describe two geometric notions, holomorphic Norden structures and Kähler-Norden structures on Hom-Lie groups, and study their relationships in the left invariant setting. We study Kähler-Norden structures with abelian complex structures and give the curvature properties of holomorphic Norden structures on Hom-Lie groups. Finally, we show that any left-invariant holomorphic Hom-Lie group is a flat (holomorphic Norden Hom-Lie algebra carries a Hom-Left-symmetric algebra) if its left-invariant complex structure (complex structure) is abelian.

References

  • [1] A. Borowiec, M. Ferraris, M. Francaviglia and I. Volovich, Almost-complex and almost-product Einstein manifolds from a variational principle, J. Math. Phys. 40 (7), 3446–3464, 1999.
  • [2] A. Borowiec, M. Francaviglia and I. Volovich, Anti-Kählerian manifolds, Differential Geom. Appl. 12 (3), 281–289, 2000.
  • [3] L. Cai, J. Liu and Y. Sheng, Hom-Lie algebroids, Hom-Lie bialgebroids and Hom- Courant algebroids, J. Geom. Phys. 121, 15–32, 2017.
  • [4] N. Degirmenci and S. Karapazar, Spinors on Kähler-Norden manifolds, J. Nonlinear Math. Phys. 17 (1), 27–34, 2010.
  • [5] N. Degirmenci and S. Karapazar, Schrödinger-Lichnerowicz like formula on Kähler- Norden manifolds, Int. J. Geom. Meth. Mod. Phys. 9 (1), 1250010, 14 pp., 2012.
  • [6] E. A. Fernández-Culma and Y. Godoy, Anti-Kählerian geometry on Lie groups, Math. Phys. Anal. Geom. 21 (8), 1–24, 2018.
  • [7] G. T. Ganchev and A. V. Borisov, Note on the almost complex manifolds with Norden metric, Compt. Rend. Acad. Bulg. Sci. 39 (5), 31–34, 1986.
  • [8] K. I. Gribachev, D. G. Mekerov and G. D. Djelepov, Generalized B-manifold, Compt. Rend. Acad. Bulg. Sci. 38 (3), 299–302, 1985.
  • [9] J. Hartwig, D. Larsson and S. Silvestrov, Deformations of Lie algebras using $\sigma$- derivations, J. Algebra 295, 314–361, 2006.
  • [10] N. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations, Algebra Colloq. 6 (1), 51-70, 1999.
  • [11] M. Iscan and A. A. Salimov, On Kähler-Norden manifolds, Proc. Math. Sci. 119 (1), 71–80, 2009.
  • [12] J. Jiang, S. K. Mishra and Y. Sheng, Hom-Lie algebras and Hom-Lie groups, integration and differentiation, SIGMA Symmetry Integrability Geom. Methods Appl. 16, Paper No. 137, 22 pp., 2020.
  • [13] D. Larsson and S. Silvestrov, Quasi-Hom-Lie algebras, central extensions and 2- cocycle-like identities, J. Algebra 288, 321–344, 2005.
  • [14] C. Laurent-Gengoux, A. Makhlouf and J. Teles, Universal algebra of a Hom-Lie algebra and group-like elements, J. Pure Appl. Algebra 222 (5), 1139–1163, 2018.
  • [15] A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2, 51–64, 2008.
  • [16] A. Makhlouf and S. D. Silvestrov, Notes on formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22, 715–759, 2010.
  • [17] A. Makhlouf and D. Yau, Rota-Baxter Hom-Lie admissible algebras, Commun. Algebra 42, 1231–1257,2014.
  • [18] A. Nannicini, Generalized geometry of Norden manifolds, J. Geom. Phys. 99, 244–255, 2016.
  • [19] L. Nourmohammadifar and E. Peyghan, Complex product structures on Hom-Lie algebras, Glasgow Math. J. 61, 69–84, 2019.
  • [20] K. Olszak, On the Bochner conformal curvature of Kähler-Norden manifolds, Cent. Eur. J. Math. 3 (2), 309–317, 2005.
  • [21] E. Peyghan and L. Nourmohammadifar, Para-Kähler Hom-Lie algebras, J. Algebra Appl. 18 (3), 1950044, 24 pp., 2019
  • [22] E. Peyghan and L. Nourmohammadifar, Complex and Kähler structures on Hom-Lie algebras, Hacet. J. Math. Stat. 49 (3), 10391056, 2020.
  • [23] E. Peyghan and L. Nourmohammadifar, Hom-left symmetric algebroids , Asian-Eur. J. Math. 11 (2), 1850027, 24 pp., 2018.
  • [24] E. Peyghan, L. Nourmohammadifar and I. Mihai, Para-Sasakian geometry on Hom- Lie groups, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (4), Paper No. 163, 22 pp., 2021.
  • [25] Y. Sheng and C. Bai, A new approach to Hom-Lie bialgebras, J. Algebra 399, 232–250, 2014.
  • [26] K. Słuka, On Kähler manifolds with Norden metrics, An. tiin. Univ. Al. I. Cuza Iai. Mat. (N.S.) 47, 105–122, 2001.
  • [27] K. Słuka, On the curvature of Kähler-Norden manifolds, J. Geom. Phys. 54 (2), 131–145, 2005.
  • [28] D. Yau, Hom-Novikov algebras, J. Phys. A 44, 085202, 20 pp., 2011.
Year 2025, , 213 - 236, 28.02.2025
https://doi.org/10.15672/hujms.1344687

Abstract

References

  • [1] A. Borowiec, M. Ferraris, M. Francaviglia and I. Volovich, Almost-complex and almost-product Einstein manifolds from a variational principle, J. Math. Phys. 40 (7), 3446–3464, 1999.
  • [2] A. Borowiec, M. Francaviglia and I. Volovich, Anti-Kählerian manifolds, Differential Geom. Appl. 12 (3), 281–289, 2000.
  • [3] L. Cai, J. Liu and Y. Sheng, Hom-Lie algebroids, Hom-Lie bialgebroids and Hom- Courant algebroids, J. Geom. Phys. 121, 15–32, 2017.
  • [4] N. Degirmenci and S. Karapazar, Spinors on Kähler-Norden manifolds, J. Nonlinear Math. Phys. 17 (1), 27–34, 2010.
  • [5] N. Degirmenci and S. Karapazar, Schrödinger-Lichnerowicz like formula on Kähler- Norden manifolds, Int. J. Geom. Meth. Mod. Phys. 9 (1), 1250010, 14 pp., 2012.
  • [6] E. A. Fernández-Culma and Y. Godoy, Anti-Kählerian geometry on Lie groups, Math. Phys. Anal. Geom. 21 (8), 1–24, 2018.
  • [7] G. T. Ganchev and A. V. Borisov, Note on the almost complex manifolds with Norden metric, Compt. Rend. Acad. Bulg. Sci. 39 (5), 31–34, 1986.
  • [8] K. I. Gribachev, D. G. Mekerov and G. D. Djelepov, Generalized B-manifold, Compt. Rend. Acad. Bulg. Sci. 38 (3), 299–302, 1985.
  • [9] J. Hartwig, D. Larsson and S. Silvestrov, Deformations of Lie algebras using $\sigma$- derivations, J. Algebra 295, 314–361, 2006.
  • [10] N. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations, Algebra Colloq. 6 (1), 51-70, 1999.
  • [11] M. Iscan and A. A. Salimov, On Kähler-Norden manifolds, Proc. Math. Sci. 119 (1), 71–80, 2009.
  • [12] J. Jiang, S. K. Mishra and Y. Sheng, Hom-Lie algebras and Hom-Lie groups, integration and differentiation, SIGMA Symmetry Integrability Geom. Methods Appl. 16, Paper No. 137, 22 pp., 2020.
  • [13] D. Larsson and S. Silvestrov, Quasi-Hom-Lie algebras, central extensions and 2- cocycle-like identities, J. Algebra 288, 321–344, 2005.
  • [14] C. Laurent-Gengoux, A. Makhlouf and J. Teles, Universal algebra of a Hom-Lie algebra and group-like elements, J. Pure Appl. Algebra 222 (5), 1139–1163, 2018.
  • [15] A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2, 51–64, 2008.
  • [16] A. Makhlouf and S. D. Silvestrov, Notes on formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22, 715–759, 2010.
  • [17] A. Makhlouf and D. Yau, Rota-Baxter Hom-Lie admissible algebras, Commun. Algebra 42, 1231–1257,2014.
  • [18] A. Nannicini, Generalized geometry of Norden manifolds, J. Geom. Phys. 99, 244–255, 2016.
  • [19] L. Nourmohammadifar and E. Peyghan, Complex product structures on Hom-Lie algebras, Glasgow Math. J. 61, 69–84, 2019.
  • [20] K. Olszak, On the Bochner conformal curvature of Kähler-Norden manifolds, Cent. Eur. J. Math. 3 (2), 309–317, 2005.
  • [21] E. Peyghan and L. Nourmohammadifar, Para-Kähler Hom-Lie algebras, J. Algebra Appl. 18 (3), 1950044, 24 pp., 2019
  • [22] E. Peyghan and L. Nourmohammadifar, Complex and Kähler structures on Hom-Lie algebras, Hacet. J. Math. Stat. 49 (3), 10391056, 2020.
  • [23] E. Peyghan and L. Nourmohammadifar, Hom-left symmetric algebroids , Asian-Eur. J. Math. 11 (2), 1850027, 24 pp., 2018.
  • [24] E. Peyghan, L. Nourmohammadifar and I. Mihai, Para-Sasakian geometry on Hom- Lie groups, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (4), Paper No. 163, 22 pp., 2021.
  • [25] Y. Sheng and C. Bai, A new approach to Hom-Lie bialgebras, J. Algebra 399, 232–250, 2014.
  • [26] K. Słuka, On Kähler manifolds with Norden metrics, An. tiin. Univ. Al. I. Cuza Iai. Mat. (N.S.) 47, 105–122, 2001.
  • [27] K. Słuka, On the curvature of Kähler-Norden manifolds, J. Geom. Phys. 54 (2), 131–145, 2005.
  • [28] D. Yau, Hom-Novikov algebras, J. Phys. A 44, 085202, 20 pp., 2011.
There are 28 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Mathematics
Authors

E. Peyghan 0000-0002-2713-6253

Leila Nourmohammadifar 0000-0002-8772-4460

Abdenacer Makhlouf 0000-0002-5329-487X

Aydın Gezer

Early Pub Date April 14, 2024
Publication Date February 28, 2025
Published in Issue Year 2025

Cite

APA Peyghan, E., Nourmohammadifar, L., Makhlouf, A., Gezer, A. (2025). Kähler-Norden structures on Hom-Lie groups and Hom-Lie algebras. Hacettepe Journal of Mathematics and Statistics, 54(1), 213-236. https://doi.org/10.15672/hujms.1344687
AMA Peyghan E, Nourmohammadifar L, Makhlouf A, Gezer A. Kähler-Norden structures on Hom-Lie groups and Hom-Lie algebras. Hacettepe Journal of Mathematics and Statistics. February 2025;54(1):213-236. doi:10.15672/hujms.1344687
Chicago Peyghan, E., Leila Nourmohammadifar, Abdenacer Makhlouf, and Aydın Gezer. “Kähler-Norden Structures on Hom-Lie Groups and Hom-Lie Algebras”. Hacettepe Journal of Mathematics and Statistics 54, no. 1 (February 2025): 213-36. https://doi.org/10.15672/hujms.1344687.
EndNote Peyghan E, Nourmohammadifar L, Makhlouf A, Gezer A (February 1, 2025) Kähler-Norden structures on Hom-Lie groups and Hom-Lie algebras. Hacettepe Journal of Mathematics and Statistics 54 1 213–236.
IEEE E. Peyghan, L. Nourmohammadifar, A. Makhlouf, and A. Gezer, “Kähler-Norden structures on Hom-Lie groups and Hom-Lie algebras”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 1, pp. 213–236, 2025, doi: 10.15672/hujms.1344687.
ISNAD Peyghan, E. et al. “Kähler-Norden Structures on Hom-Lie Groups and Hom-Lie Algebras”. Hacettepe Journal of Mathematics and Statistics 54/1 (February 2025), 213-236. https://doi.org/10.15672/hujms.1344687.
JAMA Peyghan E, Nourmohammadifar L, Makhlouf A, Gezer A. Kähler-Norden structures on Hom-Lie groups and Hom-Lie algebras. Hacettepe Journal of Mathematics and Statistics. 2025;54:213–236.
MLA Peyghan, E. et al. “Kähler-Norden Structures on Hom-Lie Groups and Hom-Lie Algebras”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 1, 2025, pp. 213-36, doi:10.15672/hujms.1344687.
Vancouver Peyghan E, Nourmohammadifar L, Makhlouf A, Gezer A. Kähler-Norden structures on Hom-Lie groups and Hom-Lie algebras. Hacettepe Journal of Mathematics and Statistics. 2025;54(1):213-36.