Research Article
BibTex RIS Cite

Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces

Year 2017, Volume: 46 Issue: 3, 373 - 388, 01.06.2017

Abstract

In this paper, we simplify the iterative scheme introduced by Fukhar-ud-din and Berinde [Iterative Methods for the Class of Quasi-Contractive Type Operators and Comparison of their Rate of Convergence in Convex Metric Spaces, Filomat 30 (1), 223230, 2016] and study convergence and data dependency of the new proposed scheme of a quasi-contractive operator on a hyperbolic space. It is shown that our results provide better convergence rate.

References

  • Abbas, M., Khan, S. H. Some $\Delta-$convergence theorems in $CAT(0)$ spaces, Hacet. J. Math. Stat. 40 (4), 563569, 2011.
  • Agarwal, R. P., O' Regan, D. and Sahu, D. R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (1), 6179, 2007.
  • Berinde, V. Iterative approximation of fixed points (Springer-Verlag, Berlin, 2007).
  • Bridson, M. and Haeiger, A. Metric spaces of non-positive curvature (Springer-Verlag, Berlin, 1999).
  • Chugh, R. and Kumar, V. Data dependence of Noor and SP iterative schemes when dealing with quasi-contractive operators, Int. J. Comput. Appl. 40 (15), 4146, 2011.
  • Dhompongsa, S. and Panyanak, B. On $\Delta-$convergence theorems in $CAT(0)$ spaces, Comput. Math. Appl. 56 (10), 25722579, 2008.
  • Fukhar-ud-din H. One step iterative scheme for a pair of nonexpansive mappings in a convex metric space, Hacet. J. Math. Stat. 44 (5), 10231031, 2015.
  • Fukhar-ud-din, H. and Berinde, V. Iterative Methods for the Class of Quasi-Contractive Type Operators and Comparsion of their Rate of Convergence in Convex Metric Spaces, Filomat 30 (1), 223230, 2016.
  • Gürsoy, F., Karakaya, V. and Rhoades, B. Data dependence results of new multi-step and S-iterative schemes for contractive-like operators, Fixed Point Theory Appl. 2013 (1), 112, 2013.
  • Ishikawa, S. Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1), 147 150, 1974.
  • Karakaya, V., Gürsoy, F. and Ertürk, M. Some convergence and data dependence results for various fixed point iterative methods, Kuwait J. Sci. 43 (1), 112128, 2016.
  • Khan A. R. On modified Noor iterations for asymptotically nonexpansive mappings, Bull. Belg. Math. Soc. Simon Stevin, 17 (1), 127140, 2010.
  • Khan, A. R., Fukhar-ud-din, H. and Khan, M. A. A. An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl. 2012 (1), 112, 2012.
  • Khan A. R., Gürsoy, F. and Karakaya, V. Jungck-Khan iterative scheme and higher con- vergence rate, Int. J. Comput. Math. 93 (12), 20922105, 2016.
  • Khan, A. R., Gürsoy, F. and Kumar, V. Stability and data dependence results for Jungck- Khan iterative scheme, Turkish J. Math. 40 (3), 631640, 2016.
  • Khan, A. R., Khamsi, M. A. and Fukhar-ud-din, H. Strong convergence of a general iteration scheme in $CAT(0)-$spaces, Nonlinear Anal. 74 (3), 783791, 2011.
  • Khan, A. R., Kumar, V. and Hussain, N. Analytical and numerical treatment of Jungck-type iterative schemes, Appl. Math. Comput. 231, 521535, 2014.
  • Kirk, W. A. Krasnoselskii's iteration process in hyperbolic space, Numer. Funct. Anal. Optim. 4 (4) 371381, 19811982.
  • Knopp, K. Theory and Applications of Infinite Series (Berlin, 1931).
  • Kohlenbach, U. Some logical metatheorems with applications in functional analysis, Trans. Am. Math. Soc. 357 (1), 89128, 2005.
  • Mann, W. R. Mean value methods in iterations, Proc. Amer. Math. Soc. 4 (3), 506-510, 1953.
  • Phuengrattana, W. and Suantai, S. Comparison of the rate of convergence of various iter- ative methods for the class of weak contractions in Banach spaces, Thai J. Math. 11 (1), 217226, 2013.
  • Singh, S. L., Bhatnagar, C. and Mishra, S. N. Stability of Jungck-type iterative procedures, Int. J. Math. Math. Sci. 2005 (19), 30353043, 2005.
  • Soltuz, S. M. and Grosan, T. Data dependence for Ishikawa iteration when dealing with contractive like operators, Fixed Point Theory Appl. 2008, 17, 2008.
  • Takahashi, W. A convexity in metric spaces and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (2), 142149, 1970.
  • Talman, L. A. Fixed points for condensing multifunctions in metric spaces with convex structure, Kodai Math. Sem. Rep. 29 (1-2), 6270, 1977.
  • Weng, X. Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer. Math. Soc. 113 (3), 727731, 1991.
  • Xu, B. and Noor, M. A. Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267 (2), 444-453, 2002.
Year 2017, Volume: 46 Issue: 3, 373 - 388, 01.06.2017

Abstract

References

  • Abbas, M., Khan, S. H. Some $\Delta-$convergence theorems in $CAT(0)$ spaces, Hacet. J. Math. Stat. 40 (4), 563569, 2011.
  • Agarwal, R. P., O' Regan, D. and Sahu, D. R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (1), 6179, 2007.
  • Berinde, V. Iterative approximation of fixed points (Springer-Verlag, Berlin, 2007).
  • Bridson, M. and Haeiger, A. Metric spaces of non-positive curvature (Springer-Verlag, Berlin, 1999).
  • Chugh, R. and Kumar, V. Data dependence of Noor and SP iterative schemes when dealing with quasi-contractive operators, Int. J. Comput. Appl. 40 (15), 4146, 2011.
  • Dhompongsa, S. and Panyanak, B. On $\Delta-$convergence theorems in $CAT(0)$ spaces, Comput. Math. Appl. 56 (10), 25722579, 2008.
  • Fukhar-ud-din H. One step iterative scheme for a pair of nonexpansive mappings in a convex metric space, Hacet. J. Math. Stat. 44 (5), 10231031, 2015.
  • Fukhar-ud-din, H. and Berinde, V. Iterative Methods for the Class of Quasi-Contractive Type Operators and Comparsion of their Rate of Convergence in Convex Metric Spaces, Filomat 30 (1), 223230, 2016.
  • Gürsoy, F., Karakaya, V. and Rhoades, B. Data dependence results of new multi-step and S-iterative schemes for contractive-like operators, Fixed Point Theory Appl. 2013 (1), 112, 2013.
  • Ishikawa, S. Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1), 147 150, 1974.
  • Karakaya, V., Gürsoy, F. and Ertürk, M. Some convergence and data dependence results for various fixed point iterative methods, Kuwait J. Sci. 43 (1), 112128, 2016.
  • Khan A. R. On modified Noor iterations for asymptotically nonexpansive mappings, Bull. Belg. Math. Soc. Simon Stevin, 17 (1), 127140, 2010.
  • Khan, A. R., Fukhar-ud-din, H. and Khan, M. A. A. An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl. 2012 (1), 112, 2012.
  • Khan A. R., Gürsoy, F. and Karakaya, V. Jungck-Khan iterative scheme and higher con- vergence rate, Int. J. Comput. Math. 93 (12), 20922105, 2016.
  • Khan, A. R., Gürsoy, F. and Kumar, V. Stability and data dependence results for Jungck- Khan iterative scheme, Turkish J. Math. 40 (3), 631640, 2016.
  • Khan, A. R., Khamsi, M. A. and Fukhar-ud-din, H. Strong convergence of a general iteration scheme in $CAT(0)-$spaces, Nonlinear Anal. 74 (3), 783791, 2011.
  • Khan, A. R., Kumar, V. and Hussain, N. Analytical and numerical treatment of Jungck-type iterative schemes, Appl. Math. Comput. 231, 521535, 2014.
  • Kirk, W. A. Krasnoselskii's iteration process in hyperbolic space, Numer. Funct. Anal. Optim. 4 (4) 371381, 19811982.
  • Knopp, K. Theory and Applications of Infinite Series (Berlin, 1931).
  • Kohlenbach, U. Some logical metatheorems with applications in functional analysis, Trans. Am. Math. Soc. 357 (1), 89128, 2005.
  • Mann, W. R. Mean value methods in iterations, Proc. Amer. Math. Soc. 4 (3), 506-510, 1953.
  • Phuengrattana, W. and Suantai, S. Comparison of the rate of convergence of various iter- ative methods for the class of weak contractions in Banach spaces, Thai J. Math. 11 (1), 217226, 2013.
  • Singh, S. L., Bhatnagar, C. and Mishra, S. N. Stability of Jungck-type iterative procedures, Int. J. Math. Math. Sci. 2005 (19), 30353043, 2005.
  • Soltuz, S. M. and Grosan, T. Data dependence for Ishikawa iteration when dealing with contractive like operators, Fixed Point Theory Appl. 2008, 17, 2008.
  • Takahashi, W. A convexity in metric spaces and nonexpansive mappings I, Kodai Math. Sem. Rep. 22 (2), 142149, 1970.
  • Talman, L. A. Fixed points for condensing multifunctions in metric spaces with convex structure, Kodai Math. Sem. Rep. 29 (1-2), 6270, 1977.
  • Weng, X. Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer. Math. Soc. 113 (3), 727731, 1991.
  • Xu, B. and Noor, M. A. Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267 (2), 444-453, 2002.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Faik Gursoy

Abdul Rahim Khan

Hafiz Fukhar-ud-din

Publication Date June 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 3

Cite

APA Gursoy, F., Khan, A. R., & Fukhar-ud-din, H. (2017). Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces. Hacettepe Journal of Mathematics and Statistics, 46(3), 373-388.
AMA Gursoy F, Khan AR, Fukhar-ud-din H. Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces. Hacettepe Journal of Mathematics and Statistics. June 2017;46(3):373-388.
Chicago Gursoy, Faik, Abdul Rahim Khan, and Hafiz Fukhar-ud-din. “Convergence and Data Dependence Results for Quasi-Contractive Type Operators in Hyperbolic Spaces”. Hacettepe Journal of Mathematics and Statistics 46, no. 3 (June 2017): 373-88.
EndNote Gursoy F, Khan AR, Fukhar-ud-din H (June 1, 2017) Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces. Hacettepe Journal of Mathematics and Statistics 46 3 373–388.
IEEE F. Gursoy, A. R. Khan, and H. Fukhar-ud-din, “Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 3, pp. 373–388, 2017.
ISNAD Gursoy, Faik et al. “Convergence and Data Dependence Results for Quasi-Contractive Type Operators in Hyperbolic Spaces”. Hacettepe Journal of Mathematics and Statistics 46/3 (June 2017), 373-388.
JAMA Gursoy F, Khan AR, Fukhar-ud-din H. Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces. Hacettepe Journal of Mathematics and Statistics. 2017;46:373–388.
MLA Gursoy, Faik et al. “Convergence and Data Dependence Results for Quasi-Contractive Type Operators in Hyperbolic Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 3, 2017, pp. 373-88.
Vancouver Gursoy F, Khan AR, Fukhar-ud-din H. Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces. Hacettepe Journal of Mathematics and Statistics. 2017;46(3):373-88.