Research Article
BibTex RIS Cite

Odd Burr Lindley distribution with properties and applications

Year 2017, Volume: 46 Issue: 2, 255 - 276, 01.04.2017

Abstract

In this study, we introduce a new model called the Odd Burr Lindley distribution which extends the Lindley distribution and has increasing, bathtub and upside down shapes for the hazard rate function. It includes the odd Lindley distribution as a special case. Several statistical properties of the distribution are explored, such as the density, hazard rate, survival, quantile functions, and moments. Estimation using the maximum likelihood and inference of a random sample from the distribution are investigated. A simulation study is performed to compare the performance of the different parameter estimates in terms of bias and mean square error. Two real data applications are modelled with the proposed distribution to illustrate the performance of the new distribution. Based on goodness-of-fit statistics, the new distribution outperforms the generalized gamma, gamma Weibull, gamma exponentiated exponential, generalized Lindley, Kumaraswamy Lindley, and odd log-logistic Lindley distributions.

References

  • Alizadeh, M., Cordeiro, G. M., C. Nascimento, A. D., Lima, M. D. C. S., Ortega, E. M. (2016). Odd-Burr generalized family of distributions with some applications. Journal of Statistical Computation and Simulation, 1-23.
  • Alzaatreh, A., Famoye, F., Lee, C. (2013). A new method for generating families of continuous distributions.Metron, 71, 63-79.
  • Ashour, S. K., Eltehiwy, M. A. (2015). Exponentiated power Lindley distribution. Journal of advanced research, 6(6), 895-905.
  • Cakmakyapan, S., Ozel, G. (2014). A new customer lifetime duration distribution: The Kumaraswamy Lindley distribution, International Journal of Trade, Economics and Finance, 5 (5), 441-444.
  • Cordeiro, G. M., Ortega, E. M., Silva, G. O. (2014). The Kumaraswamy modified Weibull distribution: theory and applications. Journal of Statistical Computation and Simulation, 84(7), 1387-1411.
  • Cordeiro, G. M., Alizadeh, M., Tahir, M. H., Mansoor, M., Bourguignon, M., Hamedani, G. G. (2015). The beta odd log-logistic generalized family of distributions, Hacettepe Journal of Mathematics and Statistics, 45 (73).
  • Ghitany, M.E., Atieh, B., Nadarajah, S. (2008). Lindley distribution and its application, Mathematics and Computers in Simulation, 78, 493-506.
  • Ghitany, M. E., Al-Mutairi, D. K., Balakrishnan, N., Al-Enezi, L. J. (2013). Power Lindley distribution and associated inference. Computational Statistics Data Analysis, 64, 20-33.
  • Lindley, D. V. (1958). Fiducial distributions and Bayes theorem,Journal of the Royal Sta- tistical Society, 20 (1), 102107.
  • Nichols, M. D., Padgett, W. J. (2006). A bootstrap control chart for Weibull percentiles. Quality and reliability engineering international, 22 (2), 141-151.
  • Pal, M., Tiensuwan, M. (2014). The beta transmuted Weibull distribution.Austrian Journal of Statistics, 43 (2), 133-149.
  • Provost, S. B., Saboor, A., Ahmad, M. (2011). The Gamma-Weibull distribution. Pakistan Journal of Statistics, 27(2), 111-131.
  • Risti¢, M. M., Balakrishnan, N. (2012). The gamma-exponentiated exponential distribution. Journal of Statistical Computation and Simulation, 82 (8), 1191-1206.
  • Shanker, R., Mishra, A. (2013). A quasi Lindley distribution. African Journal of Mathe- matics and Computer Science Research, 6 (4), 64-71.
  • Stacy, E. W. (1962). A generalization of the gamma distribution. Annals of Mathematical Statistics, 1187-1192.
  • Zakerzadeh, H., Dolati, A. (2009). Generalized Lindley distribution. Journal of Mathemat- ical Extension, 3 (2), 13-25.
Year 2017, Volume: 46 Issue: 2, 255 - 276, 01.04.2017

Abstract

References

  • Alizadeh, M., Cordeiro, G. M., C. Nascimento, A. D., Lima, M. D. C. S., Ortega, E. M. (2016). Odd-Burr generalized family of distributions with some applications. Journal of Statistical Computation and Simulation, 1-23.
  • Alzaatreh, A., Famoye, F., Lee, C. (2013). A new method for generating families of continuous distributions.Metron, 71, 63-79.
  • Ashour, S. K., Eltehiwy, M. A. (2015). Exponentiated power Lindley distribution. Journal of advanced research, 6(6), 895-905.
  • Cakmakyapan, S., Ozel, G. (2014). A new customer lifetime duration distribution: The Kumaraswamy Lindley distribution, International Journal of Trade, Economics and Finance, 5 (5), 441-444.
  • Cordeiro, G. M., Ortega, E. M., Silva, G. O. (2014). The Kumaraswamy modified Weibull distribution: theory and applications. Journal of Statistical Computation and Simulation, 84(7), 1387-1411.
  • Cordeiro, G. M., Alizadeh, M., Tahir, M. H., Mansoor, M., Bourguignon, M., Hamedani, G. G. (2015). The beta odd log-logistic generalized family of distributions, Hacettepe Journal of Mathematics and Statistics, 45 (73).
  • Ghitany, M.E., Atieh, B., Nadarajah, S. (2008). Lindley distribution and its application, Mathematics and Computers in Simulation, 78, 493-506.
  • Ghitany, M. E., Al-Mutairi, D. K., Balakrishnan, N., Al-Enezi, L. J. (2013). Power Lindley distribution and associated inference. Computational Statistics Data Analysis, 64, 20-33.
  • Lindley, D. V. (1958). Fiducial distributions and Bayes theorem,Journal of the Royal Sta- tistical Society, 20 (1), 102107.
  • Nichols, M. D., Padgett, W. J. (2006). A bootstrap control chart for Weibull percentiles. Quality and reliability engineering international, 22 (2), 141-151.
  • Pal, M., Tiensuwan, M. (2014). The beta transmuted Weibull distribution.Austrian Journal of Statistics, 43 (2), 133-149.
  • Provost, S. B., Saboor, A., Ahmad, M. (2011). The Gamma-Weibull distribution. Pakistan Journal of Statistics, 27(2), 111-131.
  • Risti¢, M. M., Balakrishnan, N. (2012). The gamma-exponentiated exponential distribution. Journal of Statistical Computation and Simulation, 82 (8), 1191-1206.
  • Shanker, R., Mishra, A. (2013). A quasi Lindley distribution. African Journal of Mathe- matics and Computer Science Research, 6 (4), 64-71.
  • Stacy, E. W. (1962). A generalization of the gamma distribution. Annals of Mathematical Statistics, 1187-1192.
  • Zakerzadeh, H., Dolati, A. (2009). Generalized Lindley distribution. Journal of Mathemat- ical Extension, 3 (2), 13-25.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Statistics
Authors

Gokcen Altun

Morad Alizadeh

Emrah Altun This is me

Gamze Ozel

Publication Date April 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 2

Cite

APA Altun, G., Alizadeh, M., Altun, E., Ozel, G. (2017). Odd Burr Lindley distribution with properties and applications. Hacettepe Journal of Mathematics and Statistics, 46(2), 255-276.
AMA Altun G, Alizadeh M, Altun E, Ozel G. Odd Burr Lindley distribution with properties and applications. Hacettepe Journal of Mathematics and Statistics. April 2017;46(2):255-276.
Chicago Altun, Gokcen, Morad Alizadeh, Emrah Altun, and Gamze Ozel. “Odd Burr Lindley Distribution With Properties and Applications”. Hacettepe Journal of Mathematics and Statistics 46, no. 2 (April 2017): 255-76.
EndNote Altun G, Alizadeh M, Altun E, Ozel G (April 1, 2017) Odd Burr Lindley distribution with properties and applications. Hacettepe Journal of Mathematics and Statistics 46 2 255–276.
IEEE G. Altun, M. Alizadeh, E. Altun, and G. Ozel, “Odd Burr Lindley distribution with properties and applications”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 2, pp. 255–276, 2017.
ISNAD Altun, Gokcen et al. “Odd Burr Lindley Distribution With Properties and Applications”. Hacettepe Journal of Mathematics and Statistics 46/2 (April 2017), 255-276.
JAMA Altun G, Alizadeh M, Altun E, Ozel G. Odd Burr Lindley distribution with properties and applications. Hacettepe Journal of Mathematics and Statistics. 2017;46:255–276.
MLA Altun, Gokcen et al. “Odd Burr Lindley Distribution With Properties and Applications”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 2, 2017, pp. 255-76.
Vancouver Altun G, Alizadeh M, Altun E, Ozel G. Odd Burr Lindley distribution with properties and applications. Hacettepe Journal of Mathematics and Statistics. 2017;46(2):255-76.