Research Article
BibTex RIS Cite

The exponentiated Kumaraswamy-power function distribution

Year 2017, Volume: 46 Issue: 2, 277 - 292, 01.04.2017

Abstract

In this paper, the exponentiated Kumaraswamy-power function distribution is introduced. Some structural properties of the proposed distribution including the shapes of the density, hazard and quantile functions are explored. Besides, skewness and kurtosis measures are investigated. The method of maximum likelihood is used for estimating model parameters. For different parameter settings and sample sizes, a simulation study is performed and the performance of the new distribution is compared with some well-known distributions. Then, an application is presented with a real data set to illustrate the usefulness of the proposed distribution.

References

  • Zaka, A. and Akhtar, A.S. Estimation of parameters of the Power function distribution: Different classical methods, Pakistan Journal of Statistics and Operation Research, 9 (2), 213-224, 2013.
  • Haq, M.A.u., Butt, N.S., Usman, R.M. and Fattah, A.A. Trunsmuted power function dis- tribution, Gazi University Journal of Science, 29 (1),177-185, 2016.
  • Meniconi, M. and Barry, D. The power function distribution: A useful and simple distribu- tion to assess electrical component reliability, Microelectronics Reliability, 36 (9), 1207-1212, 1996.
  • Ahsanullah, M. and Kabir, A. A characterization of the power function distribution, The Canadian Journal of Statistics/La Revue Canadianne de Statistique, 2 (1), 95-98, 1974.
  • Zaka, A. and Akhter, A. Modified moment, maximum likelihood and percentile estimators for the parameters of the power function distribution, Pakistan Journal of Statistics and Operation Research, 10 (4), 369-388, 2014.
  • Zaka, A. and Akhter, A. Bayesian analysis of power function distribution using different loss functions, International Journal of Hybrid Information Technology, 7 (6), 229-244, 2014.
  • Zaka, A., Froze, N. and Akhter, A. A note on modified estimators for the parameters of the power function distribution, International Journal of Advanced Science and Technology, 59 ,71-84, 2013.
  • Sultan, R., Sultan, H. and Ahmad, S. Bayesian analysis of power function distribution under double priors, Journal of Statistics Applications and Probability, 3 (2), 239-249, 2014.
  • Sinha, S.K., Singh, P. and Singh, D.C. Preliminary test estimators for the scale parameter of power function distribution, Journal of Reliability and Statistical Studies, 11 (1), 18-24, 2008.
  • Abdulsathar, E.I., Jeevanand, E.S. and Nair, K.R.M. Bayes estimation of Lorenz curve and Gini-index for power function distribution, South African Statistical Journal, 49 (1), 21-33, 2015.
  • Cordeiro, G. and dos Santos Brito, R. The beta power distribution, Brazilian Journal of Probability and Statistics, 26 (1), 88-112, 2012.
  • Oguntunde, P., Odetunmibi, O., Okagbue, H., Babatunde, O. and Ugwoke, P. The Kumaraswamy-power distribution: A generalization of the power distribution, International Journal of Mathematical Analysis, 9 (13), 637-645, 2015.
  • Tahir, M., Alizadeh, M., Mansoor, M., Cordeiro, G. and Zubair, M. The Weibull-power function distribution with applications, Hacettepe Journal of Mathematics and Statistics, 45 (1), 245-265, 2016.
  • Shakeel, M., Haq , M., Hussain, I., Abdulhamid, A. and Faisal, M. Comparison of two new robust parameter estimaton methods for the power function distribution, Plos One, 8, 1-11, 2016.
  • Mansoor, M., Tahir, M., Alzaatreh, A., Corediro, G., Zubair, M. and Ghazali, S. An extended Fret distribution: Properties and applications, Journal of Data Science, 14, 167-188, 2016.
Year 2017, Volume: 46 Issue: 2, 277 - 292, 01.04.2017

Abstract

References

  • Zaka, A. and Akhtar, A.S. Estimation of parameters of the Power function distribution: Different classical methods, Pakistan Journal of Statistics and Operation Research, 9 (2), 213-224, 2013.
  • Haq, M.A.u., Butt, N.S., Usman, R.M. and Fattah, A.A. Trunsmuted power function dis- tribution, Gazi University Journal of Science, 29 (1),177-185, 2016.
  • Meniconi, M. and Barry, D. The power function distribution: A useful and simple distribu- tion to assess electrical component reliability, Microelectronics Reliability, 36 (9), 1207-1212, 1996.
  • Ahsanullah, M. and Kabir, A. A characterization of the power function distribution, The Canadian Journal of Statistics/La Revue Canadianne de Statistique, 2 (1), 95-98, 1974.
  • Zaka, A. and Akhter, A. Modified moment, maximum likelihood and percentile estimators for the parameters of the power function distribution, Pakistan Journal of Statistics and Operation Research, 10 (4), 369-388, 2014.
  • Zaka, A. and Akhter, A. Bayesian analysis of power function distribution using different loss functions, International Journal of Hybrid Information Technology, 7 (6), 229-244, 2014.
  • Zaka, A., Froze, N. and Akhter, A. A note on modified estimators for the parameters of the power function distribution, International Journal of Advanced Science and Technology, 59 ,71-84, 2013.
  • Sultan, R., Sultan, H. and Ahmad, S. Bayesian analysis of power function distribution under double priors, Journal of Statistics Applications and Probability, 3 (2), 239-249, 2014.
  • Sinha, S.K., Singh, P. and Singh, D.C. Preliminary test estimators for the scale parameter of power function distribution, Journal of Reliability and Statistical Studies, 11 (1), 18-24, 2008.
  • Abdulsathar, E.I., Jeevanand, E.S. and Nair, K.R.M. Bayes estimation of Lorenz curve and Gini-index for power function distribution, South African Statistical Journal, 49 (1), 21-33, 2015.
  • Cordeiro, G. and dos Santos Brito, R. The beta power distribution, Brazilian Journal of Probability and Statistics, 26 (1), 88-112, 2012.
  • Oguntunde, P., Odetunmibi, O., Okagbue, H., Babatunde, O. and Ugwoke, P. The Kumaraswamy-power distribution: A generalization of the power distribution, International Journal of Mathematical Analysis, 9 (13), 637-645, 2015.
  • Tahir, M., Alizadeh, M., Mansoor, M., Cordeiro, G. and Zubair, M. The Weibull-power function distribution with applications, Hacettepe Journal of Mathematics and Statistics, 45 (1), 245-265, 2016.
  • Shakeel, M., Haq , M., Hussain, I., Abdulhamid, A. and Faisal, M. Comparison of two new robust parameter estimaton methods for the power function distribution, Plos One, 8, 1-11, 2016.
  • Mansoor, M., Tahir, M., Alzaatreh, A., Corediro, G., Zubair, M. and Ghazali, S. An extended Fret distribution: Properties and applications, Journal of Data Science, 14, 167-188, 2016.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Statistics
Authors

Nurbanu Bursa This is me

Gamze Ozel

Publication Date April 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 2

Cite

APA Bursa, N., & Ozel, G. (2017). The exponentiated Kumaraswamy-power function distribution. Hacettepe Journal of Mathematics and Statistics, 46(2), 277-292.
AMA Bursa N, Ozel G. The exponentiated Kumaraswamy-power function distribution. Hacettepe Journal of Mathematics and Statistics. April 2017;46(2):277-292.
Chicago Bursa, Nurbanu, and Gamze Ozel. “The Exponentiated Kumaraswamy-Power Function Distribution”. Hacettepe Journal of Mathematics and Statistics 46, no. 2 (April 2017): 277-92.
EndNote Bursa N, Ozel G (April 1, 2017) The exponentiated Kumaraswamy-power function distribution. Hacettepe Journal of Mathematics and Statistics 46 2 277–292.
IEEE N. Bursa and G. Ozel, “The exponentiated Kumaraswamy-power function distribution”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 2, pp. 277–292, 2017.
ISNAD Bursa, Nurbanu - Ozel, Gamze. “The Exponentiated Kumaraswamy-Power Function Distribution”. Hacettepe Journal of Mathematics and Statistics 46/2 (April 2017), 277-292.
JAMA Bursa N, Ozel G. The exponentiated Kumaraswamy-power function distribution. Hacettepe Journal of Mathematics and Statistics. 2017;46:277–292.
MLA Bursa, Nurbanu and Gamze Ozel. “The Exponentiated Kumaraswamy-Power Function Distribution”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 2, 2017, pp. 277-92.
Vancouver Bursa N, Ozel G. The exponentiated Kumaraswamy-power function distribution. Hacettepe Journal of Mathematics and Statistics. 2017;46(2):277-92.