Research Article
BibTex RIS Cite

On $\ast$-$(\sigma,\tau)$-Lie ideals of $\ast$-prime rings with derivation

Year 2018, Volume: 47 Issue: 5, 1240 - 1247, 16.10.2018

Abstract

Let $R$ be a $\ast$-prime ring with characteristic not 2, $U$ be a nonzero $\ast$-$(\sigma,\tau)$-Lie ideal of $R$ and $d$ be a nonzero derivation of $R$. Suppose $\sigma$, $\tau$ be two automorphisms of $R$ such that $\sigma d=d\sigma$, $\tau d=d\tau$ and $\ast$ commutes with $\sigma,\tau,d$. In the present paper it is shown that if $d^2(U)=(0)$, then $U\subset Z$.

References

  • Aydın, N. and Soytürk, M., $(\sigma,\tau)$- Lie ideals in prime rings with derivation, Doğa- Tr. J. Of Math., 19, 239-244, 1995.
  • Bergen, J., Herstein, I.N. and Kerr, J.W., Lie ideals and derivations of prime rings, J. Algebra, 71, 259-267, 1981.
  • Kaya, K., $(\sigma,\tau)$- Lie ideals in prime rings, An. Üniv. Timisoara, Stiinte Mat., 30 (2-3), 251-255, 1992.
  • Lee, P. H. and Lee, T. K., Lie ideals of prime rings with derivations, Bull. Inst. Math., Acad. Sin., 11, 7580, 1983.
  • Oukhtite, L. and Salhi, S., On commutativity of $\sigma$-prime rings, Glasnik Math., 41, no. 61, 57-64, 2006.
  • Oukhtite, L. and Salhi, S., $\sigma$-prime rings with a special kind of automorphism, Int. J. Contemp. Math. Sci. Vol. 2, no.3, 127-133, 2007.
  • Oukhtite, L. and Salhi, S., Lie ideals and derivations of $\sigma$-prime rings, Int. J. Algebra, Vol.1, no. 1, 25-30, 2007.
  • Oukhtite, L. and Salhi, S., Centralizing automorphisms and Jordan left derivations on $\ast$-prime rings, Adv. Algebra Vol. 1, no. 1, 19-26, 2008.
  • Posner, E. C., Derivations in prime rings, Proc. Amer. Soc., 8, 1093-1100, 1957.
  • Türkmen, S. and Aydın, N., Generalized $\ast$-Lie Ideal of $\ast$-Prime Ring, Turkish J. Math. 41 (4), 841-853, 2017.
Year 2018, Volume: 47 Issue: 5, 1240 - 1247, 16.10.2018

Abstract

References

  • Aydın, N. and Soytürk, M., $(\sigma,\tau)$- Lie ideals in prime rings with derivation, Doğa- Tr. J. Of Math., 19, 239-244, 1995.
  • Bergen, J., Herstein, I.N. and Kerr, J.W., Lie ideals and derivations of prime rings, J. Algebra, 71, 259-267, 1981.
  • Kaya, K., $(\sigma,\tau)$- Lie ideals in prime rings, An. Üniv. Timisoara, Stiinte Mat., 30 (2-3), 251-255, 1992.
  • Lee, P. H. and Lee, T. K., Lie ideals of prime rings with derivations, Bull. Inst. Math., Acad. Sin., 11, 7580, 1983.
  • Oukhtite, L. and Salhi, S., On commutativity of $\sigma$-prime rings, Glasnik Math., 41, no. 61, 57-64, 2006.
  • Oukhtite, L. and Salhi, S., $\sigma$-prime rings with a special kind of automorphism, Int. J. Contemp. Math. Sci. Vol. 2, no.3, 127-133, 2007.
  • Oukhtite, L. and Salhi, S., Lie ideals and derivations of $\sigma$-prime rings, Int. J. Algebra, Vol.1, no. 1, 25-30, 2007.
  • Oukhtite, L. and Salhi, S., Centralizing automorphisms and Jordan left derivations on $\ast$-prime rings, Adv. Algebra Vol. 1, no. 1, 19-26, 2008.
  • Posner, E. C., Derivations in prime rings, Proc. Amer. Soc., 8, 1093-1100, 1957.
  • Türkmen, S. and Aydın, N., Generalized $\ast$-Lie Ideal of $\ast$-Prime Ring, Turkish J. Math. 41 (4), 841-853, 2017.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Neşet Aydın

Emine Koç

Öznur Gölbaşı

Publication Date October 16, 2018
Published in Issue Year 2018 Volume: 47 Issue: 5

Cite

APA Aydın, N., Koç, E., & Gölbaşı, Ö. (2018). On $\ast$-$(\sigma,\tau)$-Lie ideals of $\ast$-prime rings with derivation. Hacettepe Journal of Mathematics and Statistics, 47(5), 1240-1247.
AMA Aydın N, Koç E, Gölbaşı Ö. On $\ast$-$(\sigma,\tau)$-Lie ideals of $\ast$-prime rings with derivation. Hacettepe Journal of Mathematics and Statistics. October 2018;47(5):1240-1247.
Chicago Aydın, Neşet, Emine Koç, and Öznur Gölbaşı. “On $\ast$-$(\sigma,\tau)$-Lie Ideals of $\ast$-Prime Rings With Derivation”. Hacettepe Journal of Mathematics and Statistics 47, no. 5 (October 2018): 1240-47.
EndNote Aydın N, Koç E, Gölbaşı Ö (October 1, 2018) On $\ast$-$(\sigma,\tau)$-Lie ideals of $\ast$-prime rings with derivation. Hacettepe Journal of Mathematics and Statistics 47 5 1240–1247.
IEEE N. Aydın, E. Koç, and Ö. Gölbaşı, “On $\ast$-$(\sigma,\tau)$-Lie ideals of $\ast$-prime rings with derivation”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, pp. 1240–1247, 2018.
ISNAD Aydın, Neşet et al. “On $\ast$-$(\sigma,\tau)$-Lie Ideals of $\ast$-Prime Rings With Derivation”. Hacettepe Journal of Mathematics and Statistics 47/5 (October 2018), 1240-1247.
JAMA Aydın N, Koç E, Gölbaşı Ö. On $\ast$-$(\sigma,\tau)$-Lie ideals of $\ast$-prime rings with derivation. Hacettepe Journal of Mathematics and Statistics. 2018;47:1240–1247.
MLA Aydın, Neşet et al. “On $\ast$-$(\sigma,\tau)$-Lie Ideals of $\ast$-Prime Rings With Derivation”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 5, 2018, pp. 1240-7.
Vancouver Aydın N, Koç E, Gölbaşı Ö. On $\ast$-$(\sigma,\tau)$-Lie ideals of $\ast$-prime rings with derivation. Hacettepe Journal of Mathematics and Statistics. 2018;47(5):1240-7.