On the rescaled Riemannian metric of Cheeger-Gromoll type on the cotangent bundle
Year 2016,
Volume: 45 Issue: 2, 355 - 365, 01.04.2016
Aydin Gezer
,
Murat Altunbas
Abstract
Let (M, g) be an n−dimensional Riemannian manifold and T
∗M be
its cotangent bundle equipped with a Riemannian metric of CheegerGromoll type which rescale the horizontal part by a positive differentiable function. The main purpose of the present paper is to discuss
curvature properties of T
∗M and construct almost paracomplex Norden
structures on T
∗M. We investigate conditions for these structures to
be para-Kähler (paraholomorphic) and quasi-para-Kähler. Also, some
properties of almost paracomplex Norden structures in context of almost product Riemannian manifolds are presented.
References
- Agca, F. and Salimov, A. A. Some notes concerning Cheeger-Gromoll metrics, Hacet. J.
Math. Stat. 42 (5), 533-549, 2013.
- Blaga, A. M. and Crasmareanu, M. The geometry of product conjugate connections, An.
Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 59 (1), 73-84, 2013.
- Cheeger, J. and Gromoll, D. On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96, 413-443, 1972.
- Cruceanu, V. Une classe de structures géométriques sur le fibré cotangent, Tensor (N.S.) 53
Commemoration Volume I, 196-201, 1993.
- Druta, L. S. Classes of general natural almost anti-Hermitian structures on the cotangent
bundles, Mediterr. J. Math. 8 (2), 161-179, 2011.
- Fujimoto, A. Theory of G-structures, Publ. Study Group of Geometry, 1, Tokyo Univ.,
Tokyo, 1972.
- Gezer, A. and Altunbas, M. Some notes concerning Riemannian metrics of Cheeger-Gromoll
type, J. Math. Anal. Appl. 396 (1), 119-132, 2012.
- Gezer, A. and Altunbas, M. Notes on the rescaled Sasaki type metric on the cotangent
bundle, Acta Math. Sci. Ser. B Engl. Ed. 34 (1), 162-174, 2014.
- Gil-Medrano O. and Naveira, A. M. Some remarks about the Riemannian curvature operator
of a Riemannian almost-product manifold, Rev. Roum. Math. Pures Appl. 30 (18), 647-658,
1985.
- Gray, A. and Hervella, L.M. The sixteen classes of almost Hermitian manifolds and their
linear invariants, Ann. Mat. Pura Appl. IV. Ser. 123, 35-58, 1980.
- Kowalski, O. and Sekizawa, M. On the geometry of orthonormal frame bundles, Math.
Nachr. 281 (12), 1799-1809, 2008.
- de Leon, M. and Rodrigues, P. R. Methods of Differential Geometry in Analytical Mechanics,
North-Holland Mathematics Studies, 1989.
- Manev, M. and Mekerov, D. On Lie groups as quasi-Kähler manifolds with Killing Norden
metric, Adv. Geom. 8 (3), 343-352, 2008.
- Musso, E. and Tricerri, F. Riemannian Metrics on Tangent Bundles, Ann. Mat. Pura. Appl.
150 (4), 1-19, 1988.
- Naveira, A.M. A classification of Riemannian almost-product manifolds, Rend. Mat.Appl.
VII. Ser. 3, 577-592, 1983.
- Olszak, Z. On almost complex structures with Norden metrics on tangent bundles, Period.
Math. Hungar. 51 (2), 59-74, 2005.
- Oproiu, V. and Papaghiuc, N. Einstein quasi-anti-Hermitian structures on the tangent
bundle, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 50 (2), 347-360, 2004.
- Oproiu, V. and Papaghiuc, N. Classes of almost anti-Hermitian structures on the tangent
bundle of a Riemannian manifold, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 50 (1),
175-190, 2004.
- Oproiu, V. and Papaghiuc, N. Some classes of almost anti-Hermitian structures on the
tangent bundle, Mediterr. J. Math. 1 (3), 269-282, 2004.
- Papaghiuc, N. A locally symmetric complex structure with Norden metric on the tangent
bundle of a space form, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 48 (1), 101-112, 2002.
- Salimov, A. A., Iscan, M. and Etayo, F. Paraholomorphic B-manifold and its properties,
Topology Appl. 154 (4), 925-933, 2007.
- Salimov, A., Gezer, A. and Iscan, M. On para-Kähler-Norden structures on the tangent
bundles, Ann. Polon. Math. 103 (3), 247-261, 2012.
- Salimov, A. and Gezer, A. On the geometry of the (1,1) -tensor bundle with Sasaki type
metric, Chin. Ann. Math. Ser. B 32 (3), 369-386, 2011.
365
- Salimov, A. A., Iscan, M. and Akbulut, K. Notes on para-Norden-Walker 4-manifolds, Int.
J. Geom. Methods Mod. Phys. 7 (8), 1331-1347, 2010.
- Sasaki, S. On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku
Math. J. 10, 338-358, 1958.
- Staikova, M.T. and Gribachev, K. I. Canonical connections and their conformal invariants
on Riemannian almost-product manifolds, Serdica 18 (3-4), 150-161, 1992.
- Yano, K. and Ako, M. On certain operators associated with tensor field, Kodai Math. Sem.
Rep. 20, 414-436, 1968.
- Yano, K.and Ishihara, S. Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York
1973.
- Yano, K. Differential geometry on complex and almost complex spaces, Pure and Applied
Math. vol. 49, New York, Pergamon Press Book, 1965.
- Zayatuev, B. V. On some classes of almost-Hermitian structures on the tangent bundle,
Webs and Quasigroups. T.S.U. 103–106, 2002.
Year 2016,
Volume: 45 Issue: 2, 355 - 365, 01.04.2016
Aydin Gezer
,
Murat Altunbas
References
- Agca, F. and Salimov, A. A. Some notes concerning Cheeger-Gromoll metrics, Hacet. J.
Math. Stat. 42 (5), 533-549, 2013.
- Blaga, A. M. and Crasmareanu, M. The geometry of product conjugate connections, An.
Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 59 (1), 73-84, 2013.
- Cheeger, J. and Gromoll, D. On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96, 413-443, 1972.
- Cruceanu, V. Une classe de structures géométriques sur le fibré cotangent, Tensor (N.S.) 53
Commemoration Volume I, 196-201, 1993.
- Druta, L. S. Classes of general natural almost anti-Hermitian structures on the cotangent
bundles, Mediterr. J. Math. 8 (2), 161-179, 2011.
- Fujimoto, A. Theory of G-structures, Publ. Study Group of Geometry, 1, Tokyo Univ.,
Tokyo, 1972.
- Gezer, A. and Altunbas, M. Some notes concerning Riemannian metrics of Cheeger-Gromoll
type, J. Math. Anal. Appl. 396 (1), 119-132, 2012.
- Gezer, A. and Altunbas, M. Notes on the rescaled Sasaki type metric on the cotangent
bundle, Acta Math. Sci. Ser. B Engl. Ed. 34 (1), 162-174, 2014.
- Gil-Medrano O. and Naveira, A. M. Some remarks about the Riemannian curvature operator
of a Riemannian almost-product manifold, Rev. Roum. Math. Pures Appl. 30 (18), 647-658,
1985.
- Gray, A. and Hervella, L.M. The sixteen classes of almost Hermitian manifolds and their
linear invariants, Ann. Mat. Pura Appl. IV. Ser. 123, 35-58, 1980.
- Kowalski, O. and Sekizawa, M. On the geometry of orthonormal frame bundles, Math.
Nachr. 281 (12), 1799-1809, 2008.
- de Leon, M. and Rodrigues, P. R. Methods of Differential Geometry in Analytical Mechanics,
North-Holland Mathematics Studies, 1989.
- Manev, M. and Mekerov, D. On Lie groups as quasi-Kähler manifolds with Killing Norden
metric, Adv. Geom. 8 (3), 343-352, 2008.
- Musso, E. and Tricerri, F. Riemannian Metrics on Tangent Bundles, Ann. Mat. Pura. Appl.
150 (4), 1-19, 1988.
- Naveira, A.M. A classification of Riemannian almost-product manifolds, Rend. Mat.Appl.
VII. Ser. 3, 577-592, 1983.
- Olszak, Z. On almost complex structures with Norden metrics on tangent bundles, Period.
Math. Hungar. 51 (2), 59-74, 2005.
- Oproiu, V. and Papaghiuc, N. Einstein quasi-anti-Hermitian structures on the tangent
bundle, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 50 (2), 347-360, 2004.
- Oproiu, V. and Papaghiuc, N. Classes of almost anti-Hermitian structures on the tangent
bundle of a Riemannian manifold, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 50 (1),
175-190, 2004.
- Oproiu, V. and Papaghiuc, N. Some classes of almost anti-Hermitian structures on the
tangent bundle, Mediterr. J. Math. 1 (3), 269-282, 2004.
- Papaghiuc, N. A locally symmetric complex structure with Norden metric on the tangent
bundle of a space form, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 48 (1), 101-112, 2002.
- Salimov, A. A., Iscan, M. and Etayo, F. Paraholomorphic B-manifold and its properties,
Topology Appl. 154 (4), 925-933, 2007.
- Salimov, A., Gezer, A. and Iscan, M. On para-Kähler-Norden structures on the tangent
bundles, Ann. Polon. Math. 103 (3), 247-261, 2012.
- Salimov, A. and Gezer, A. On the geometry of the (1,1) -tensor bundle with Sasaki type
metric, Chin. Ann. Math. Ser. B 32 (3), 369-386, 2011.
365
- Salimov, A. A., Iscan, M. and Akbulut, K. Notes on para-Norden-Walker 4-manifolds, Int.
J. Geom. Methods Mod. Phys. 7 (8), 1331-1347, 2010.
- Sasaki, S. On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku
Math. J. 10, 338-358, 1958.
- Staikova, M.T. and Gribachev, K. I. Canonical connections and their conformal invariants
on Riemannian almost-product manifolds, Serdica 18 (3-4), 150-161, 1992.
- Yano, K. and Ako, M. On certain operators associated with tensor field, Kodai Math. Sem.
Rep. 20, 414-436, 1968.
- Yano, K.and Ishihara, S. Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York
1973.
- Yano, K. Differential geometry on complex and almost complex spaces, Pure and Applied
Math. vol. 49, New York, Pergamon Press Book, 1965.
- Zayatuev, B. V. On some classes of almost-Hermitian structures on the tangent bundle,
Webs and Quasigroups. T.S.U. 103–106, 2002.