Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 2, 451 - 459, 01.04.2019

Abstract

References

  • B. Demirtürk and R. Keskin, Integer Solutions of Some Diophantine Equations via Fibonacci and Lucas Numbers, J. Integer Seq. 12, 1-14, 2009.
  • B. Demirtürk Bitim and R. Keskin, On Some Diophantine Equations, J. Inequal. Appl. 162, 1-12, 2013.
  • P. Hilton and J. Pedersen, On generalized Fibonaccian and Lucasian numbers, Math. Gaz. 90 (518), 215-222, 2006.
  • P. Hilton, J. Pedersen and L. Somer, On Lucasian numbers, Fibonacci Quart. 35, 43-47, 1997.
  • D.E. Hinkel, An investigation of Lucas Sequences, Master thesis, Arizona University, 35 pages, 2007.
  • A.F. Horadam, Basic properties of certain generalized sequences of numbers, Fi- bonacci Quart. 3 (3), 161-176, 1965.
  • R. Keskin and B. Demirtürk, Solutions of Some Diophantine Equations Using Gen- eralized Fibonacci and Lucas Sequences, Ars Combin. 111, 161-179, 2013.
  • E. Kılıç and N. Ömür, Conics characterizing the generalized Fibonacci and Lucas sequences with indices in arithmetic progressions, Ars Combin. 94, 459-464, 2010.
  • P. Kiss, Diophantine representations of generalized Fibonacci numbers, Elem. Math. 34, 129-132, 1979.
  • Y.V. Matiyasevich, Hilbert’s Tenth Problem, MIT Press, Cambridge, MA, 1993.
  • W.L. McDaniel, Diophantine Representation of Lucas Sequences, Fibonacci Quart. 33, 58-63, 1995.
  • R. Melham, Conics Which Characterize Certain Lucas Sequences, Fibonacci Quart. 35, 248-251, 1997.
  • S. Rabinowitz, Algorithmic Manipulation of Fibonacci Identities, Applications of Fi- bonacci Numbers, 6 (edited by G. E. Bergum, et al.), Kluwer Academic Pub., Dor- drect, The Netherlands, 389-408, 1996.
  • P. Ribenboim, Square classes of Fibonacci and Lucas numbers, Port. Math. 46 (2), 159-175, 1989.
  • P. Ribenboim, The Little book of big primes, Springer-Verlag, New York, 1991.
  • P. Ribenboim, An Algorithm to Determine the Points with Integral Coordinates in Certain Elliptic Curves, J. Number Theory 74, 19-38, 1999.
  • P. Ribenboim, My numbers, My friends, Springer-Verlag Inc., New York, 2000.
  • S. Zhiwei, Singlefold Diophantine representation of the sequence $U_{0}=0$, $U_{1}=1$ and $U_{n+2}=m U_{n+1}+U_{n}$, Pure and Applied Logic, Beijing Univ. Press, Beijing, 97-101, 1992.

Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers

Year 2019, Volume: 48 Issue: 2, 451 - 459, 01.04.2019

Abstract

In this study, we present some identities involving generalized Fibonacci sequence $\left(U_{n}\right)$ and generalized Lucas sequence $\left(V_{n}\right)$. Then we give all solutions of the Diophantine equations $x^{2}-V_{n}xy+(-1)^{n}y^{2}=\pm (p^{2}+4)U_{n}^{2},$ $x^{2}-V_{n}xy+(-1)^{n}y^{2}=\pm U_{n}^{2},$ $x^{2}-(p^{2}+4)U_{n}xy-(p^{2}+4)(-1)^{n}y^{2}=\pm V_{n}^{2},$ $x^{2}-V_{n}xy\pm y^{2}=\pm 1,$ $x^{2}-(p^{2}+4)U_{n}xy-(p^{2}+4)(-1)^{n}y^{2}=1,$ $x^{2}-V_{n}xy+(-1)^{n}y^{2}=\pm (p^{2}+4)$, $x^{2}-V_{2n}xy+y^{2}=\pm(p^{2}+4)V_{n}^{2}$, $x^{2}-V_{2n}xy+y^{2}=(p^{2}+4)U_{n}^{2}$ and $x^{2}-V_{2n}xy+y^{2}=\pm V_{n}^{2}$ in terms of the sequences $\left( U_{n}\right) $ and $\left( V_{n}\right) $ with $p\geq 1$ and $p^{2}+4$ squarefree.

References

  • B. Demirtürk and R. Keskin, Integer Solutions of Some Diophantine Equations via Fibonacci and Lucas Numbers, J. Integer Seq. 12, 1-14, 2009.
  • B. Demirtürk Bitim and R. Keskin, On Some Diophantine Equations, J. Inequal. Appl. 162, 1-12, 2013.
  • P. Hilton and J. Pedersen, On generalized Fibonaccian and Lucasian numbers, Math. Gaz. 90 (518), 215-222, 2006.
  • P. Hilton, J. Pedersen and L. Somer, On Lucasian numbers, Fibonacci Quart. 35, 43-47, 1997.
  • D.E. Hinkel, An investigation of Lucas Sequences, Master thesis, Arizona University, 35 pages, 2007.
  • A.F. Horadam, Basic properties of certain generalized sequences of numbers, Fi- bonacci Quart. 3 (3), 161-176, 1965.
  • R. Keskin and B. Demirtürk, Solutions of Some Diophantine Equations Using Gen- eralized Fibonacci and Lucas Sequences, Ars Combin. 111, 161-179, 2013.
  • E. Kılıç and N. Ömür, Conics characterizing the generalized Fibonacci and Lucas sequences with indices in arithmetic progressions, Ars Combin. 94, 459-464, 2010.
  • P. Kiss, Diophantine representations of generalized Fibonacci numbers, Elem. Math. 34, 129-132, 1979.
  • Y.V. Matiyasevich, Hilbert’s Tenth Problem, MIT Press, Cambridge, MA, 1993.
  • W.L. McDaniel, Diophantine Representation of Lucas Sequences, Fibonacci Quart. 33, 58-63, 1995.
  • R. Melham, Conics Which Characterize Certain Lucas Sequences, Fibonacci Quart. 35, 248-251, 1997.
  • S. Rabinowitz, Algorithmic Manipulation of Fibonacci Identities, Applications of Fi- bonacci Numbers, 6 (edited by G. E. Bergum, et al.), Kluwer Academic Pub., Dor- drect, The Netherlands, 389-408, 1996.
  • P. Ribenboim, Square classes of Fibonacci and Lucas numbers, Port. Math. 46 (2), 159-175, 1989.
  • P. Ribenboim, The Little book of big primes, Springer-Verlag, New York, 1991.
  • P. Ribenboim, An Algorithm to Determine the Points with Integral Coordinates in Certain Elliptic Curves, J. Number Theory 74, 19-38, 1999.
  • P. Ribenboim, My numbers, My friends, Springer-Verlag Inc., New York, 2000.
  • S. Zhiwei, Singlefold Diophantine representation of the sequence $U_{0}=0$, $U_{1}=1$ and $U_{n+2}=m U_{n+1}+U_{n}$, Pure and Applied Logic, Beijing Univ. Press, Beijing, 97-101, 1992.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Bahar Demirtürk Bitim 0000-0002-5911-5190

Refik Keskin 0000-0003-2547-2082

Publication Date April 1, 2019
Published in Issue Year 2019 Volume: 48 Issue: 2

Cite

APA Demirtürk Bitim, B., & Keskin, R. (2019). Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers. Hacettepe Journal of Mathematics and Statistics, 48(2), 451-459.
AMA Demirtürk Bitim B, Keskin R. Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers. Hacettepe Journal of Mathematics and Statistics. April 2019;48(2):451-459.
Chicago Demirtürk Bitim, Bahar, and Refik Keskin. “Solutions of Some Diophantine Equations in Terms of Generalized Fibonacci and Lucas Numbers”. Hacettepe Journal of Mathematics and Statistics 48, no. 2 (April 2019): 451-59.
EndNote Demirtürk Bitim B, Keskin R (April 1, 2019) Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers. Hacettepe Journal of Mathematics and Statistics 48 2 451–459.
IEEE B. Demirtürk Bitim and R. Keskin, “Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 2, pp. 451–459, 2019.
ISNAD Demirtürk Bitim, Bahar - Keskin, Refik. “Solutions of Some Diophantine Equations in Terms of Generalized Fibonacci and Lucas Numbers”. Hacettepe Journal of Mathematics and Statistics 48/2 (April 2019), 451-459.
JAMA Demirtürk Bitim B, Keskin R. Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers. Hacettepe Journal of Mathematics and Statistics. 2019;48:451–459.
MLA Demirtürk Bitim, Bahar and Refik Keskin. “Solutions of Some Diophantine Equations in Terms of Generalized Fibonacci and Lucas Numbers”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 2, 2019, pp. 451-9.
Vancouver Demirtürk Bitim B, Keskin R. Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers. Hacettepe Journal of Mathematics and Statistics. 2019;48(2):451-9.