Research Article
BibTex RIS Cite

Constructions of helicoidal surfaces by using curvature functions in isotropic space

Year 2019, Volume: 48 Issue: 4, 959 - 965, 08.08.2019

Abstract

In the present  paper, we study helicoidal surfaces in the three dimensional isotropic space $\Bbb I^3$ and construct  helicoidal surfaces with prescribed Gaussian curvature or mean curvature given by smooth functions. Moreover, we give some examples of helicoidal surfaces with non-constant Gaussian curvature or mean curvature.

References

  • [1] M.E. Aydin, Classification results on surfaces in the isotropic 3-space, AKU J. Sci. Eng. 16, 239-246, 2016.
  • [2] C. Baikoussis and T. Koufogiorgos, T., Helicoidal surfaces with prescribed mean or Gaussian curvature, J. Geom. 63, 25-29, 1988.
  • [3] Chr.C. Beneki, G. Kaimakamis and B.J. Papantonios, Helicoidal surfaces in threedimensional Minkowski space, J. Math. Anal. Appl. 275, 586-614, 2002.
  • [4] R. Caddeo, P. Piu and A. Ratto, Rotation surfaces in $H_3$ with constant Gauss curvature, Bollettino U.M.I. 7, 341-357, 1996.
  • [5] C. Delaunay, Sur la surface de revolution dont la courbure moyenne est constante, J. Math. Pures Appl. Series 1 6, 309-320, 1841.
  • [6] M.P. do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature, Tôhoku Math. J. 34 (3), 425-435, 1982.
  • [7] A. Gray, Modern differential geometry of curves and surfaces, CRC Press 1993.
  • [8] J.-I. Hano and K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tôhoku Math. J. 36, 427-437, 1984.
  • [9] F. Ji and Z.H. Hou, Helicoidal surfaces under the cubic screw motion in Minkowski 3-space, J. Math. Anal. Appl. 318, 634-647, 2006.
  • [10] H. Pottmann, P. Grohs and N.J. Mitra, Laguerre minimal surfaces, isotropic geometry and linear elasticity, Adv. Comput. Math. 31, 391-419, 2009.
  • [11] Ž.M. Šipuš, Translation surfaces of constant curvatures in a simply isotropic space, Period. Math. Hungar. 68, 160-175, 2014.
  • [12] D.W. Yoon, D.-S. Kim, Y.H. Kim and J.W. Lee, Helicoidal surfaces with prescribed curvature in $Nil_3$, International J. Math. 24, 1350107 (11 pages), 2013.
Year 2019, Volume: 48 Issue: 4, 959 - 965, 08.08.2019

Abstract

References

  • [1] M.E. Aydin, Classification results on surfaces in the isotropic 3-space, AKU J. Sci. Eng. 16, 239-246, 2016.
  • [2] C. Baikoussis and T. Koufogiorgos, T., Helicoidal surfaces with prescribed mean or Gaussian curvature, J. Geom. 63, 25-29, 1988.
  • [3] Chr.C. Beneki, G. Kaimakamis and B.J. Papantonios, Helicoidal surfaces in threedimensional Minkowski space, J. Math. Anal. Appl. 275, 586-614, 2002.
  • [4] R. Caddeo, P. Piu and A. Ratto, Rotation surfaces in $H_3$ with constant Gauss curvature, Bollettino U.M.I. 7, 341-357, 1996.
  • [5] C. Delaunay, Sur la surface de revolution dont la courbure moyenne est constante, J. Math. Pures Appl. Series 1 6, 309-320, 1841.
  • [6] M.P. do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature, Tôhoku Math. J. 34 (3), 425-435, 1982.
  • [7] A. Gray, Modern differential geometry of curves and surfaces, CRC Press 1993.
  • [8] J.-I. Hano and K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tôhoku Math. J. 36, 427-437, 1984.
  • [9] F. Ji and Z.H. Hou, Helicoidal surfaces under the cubic screw motion in Minkowski 3-space, J. Math. Anal. Appl. 318, 634-647, 2006.
  • [10] H. Pottmann, P. Grohs and N.J. Mitra, Laguerre minimal surfaces, isotropic geometry and linear elasticity, Adv. Comput. Math. 31, 391-419, 2009.
  • [11] Ž.M. Šipuš, Translation surfaces of constant curvatures in a simply isotropic space, Period. Math. Hungar. 68, 160-175, 2014.
  • [12] D.W. Yoon, D.-S. Kim, Y.H. Kim and J.W. Lee, Helicoidal surfaces with prescribed curvature in $Nil_3$, International J. Math. 24, 1350107 (11 pages), 2013.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Dae Won Yoon 0000-0001-8620-0676

Jae Won Lee 0000-0001-8562-0767

Chul Woo Lee 0000-0003-0223-2318

Publication Date August 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 4

Cite

APA Yoon, D. W., Lee, J. W., & Lee, C. W. (2019). Constructions of helicoidal surfaces by using curvature functions in isotropic space. Hacettepe Journal of Mathematics and Statistics, 48(4), 959-965.
AMA Yoon DW, Lee JW, Lee CW. Constructions of helicoidal surfaces by using curvature functions in isotropic space. Hacettepe Journal of Mathematics and Statistics. August 2019;48(4):959-965.
Chicago Yoon, Dae Won, Jae Won Lee, and Chul Woo Lee. “Constructions of Helicoidal Surfaces by Using Curvature Functions in Isotropic Space”. Hacettepe Journal of Mathematics and Statistics 48, no. 4 (August 2019): 959-65.
EndNote Yoon DW, Lee JW, Lee CW (August 1, 2019) Constructions of helicoidal surfaces by using curvature functions in isotropic space. Hacettepe Journal of Mathematics and Statistics 48 4 959–965.
IEEE D. W. Yoon, J. W. Lee, and C. W. Lee, “Constructions of helicoidal surfaces by using curvature functions in isotropic space”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, pp. 959–965, 2019.
ISNAD Yoon, Dae Won et al. “Constructions of Helicoidal Surfaces by Using Curvature Functions in Isotropic Space”. Hacettepe Journal of Mathematics and Statistics 48/4 (August 2019), 959-965.
JAMA Yoon DW, Lee JW, Lee CW. Constructions of helicoidal surfaces by using curvature functions in isotropic space. Hacettepe Journal of Mathematics and Statistics. 2019;48:959–965.
MLA Yoon, Dae Won et al. “Constructions of Helicoidal Surfaces by Using Curvature Functions in Isotropic Space”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, 2019, pp. 959-65.
Vancouver Yoon DW, Lee JW, Lee CW. Constructions of helicoidal surfaces by using curvature functions in isotropic space. Hacettepe Journal of Mathematics and Statistics. 2019;48(4):959-65.