Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 4, 973 - 984, 08.08.2019

Abstract

References

  • [1] A.N. Abyzov, Weakly regular modules, Russian Math. 48 (3), 1-3, 2004.
  • [2] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Boston, Birkh¨auser, 2006.
  • [3] N.V. Ding, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics Series 313 Harlow: Longman Scientific, 1996.
  • [4] F. Kasch and A. Mader, Rings, Modules and the Totals, Frontiers in Mathematics, Birkh¨auser, 2004.
  • [5] D. Keskin, N. Orhan, P. Smith and R. Tribak, Some rings for which the cosingular submodule of every module is a direct summand, Turk. J. Math. 38, 649-657, 2014.
  • [6] D. Keskin and R. Tribak, When M-cosingular modules are projective, Vietnam J. Math. 33 (2), 214-221, 2005.
  • [7] G.O. Michler and O.E. Villamayor, On rings whose simple modules are injective, J. Algebra 25, 185-201, 1973.
  • [8] S.H. Mohamed and B.J.Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
  • [9] A.C. Özcan, On $GCO$-modules and $M$-small modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 51 (2), 25-36, 2002.
  • [10] A.C. Özcan, The torsion theory cogenerated by $\delta$-$M$-small modules and $GCO$-modules, Comm. Algebra 35 (2), 623-633, 2007.
  • [11] V.S. Ramamurthy and K.M. Rangaswamy, Generalized $V$-rings, Math. Scand. 31, 69-77, 1972.
  • [12] Y. Talebi and M.J. Nematollahi, Modules with $C^{*}$-condition, Taiwanese J. Math. 13 (5), 1451-1456, 2009.
  • [13] Y. Talebi and N. Vanaja, The torsion theory cogenerated by $M$-small modules, Comm. Algebra 30 (3), 1449-1460, 2002.
  • [14] R. Tribak and D. Keskin, On $\overline{Z}_M$-semiperfect modules, East-West J. Math. 8 (2), 193-203, 2006.
  • [15] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.

Rings for which every cosingular module is projective

Year 2019, Volume: 48 Issue: 4, 973 - 984, 08.08.2019

Abstract

Let $R$ be a ring and $M$ be an $R$-module. In this paper we investigate modules $M$ such that every (simple) cosingular $R$-module is $M$-projective. We prove that every simple cosingular module is $M$-projective if and only if for $N\leq T\leq M$, whenever $T/N$ is simple cosingular, then $N$ is a direct summand of $T$. We show that every simple cosingular right $R$-module is projective if and only if $R$ is a right $GV$-ring. It is also shown that for a right perfect ring $R$, every cosingular right $R$-module is projective if and only if $R$ is a right $GV$-ring. In addition, we prove that if every $\delta$-cosingular right $R$-module is semisimple, then $\overline{Z}(M)$ is a direct summand of $M$ for every right $R$-module $M$ if and only if $\overline{Z}_{\delta}(M)$ is a direct summand of $M$ for every right $R$-module $M$.

References

  • [1] A.N. Abyzov, Weakly regular modules, Russian Math. 48 (3), 1-3, 2004.
  • [2] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Boston, Birkh¨auser, 2006.
  • [3] N.V. Ding, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics Series 313 Harlow: Longman Scientific, 1996.
  • [4] F. Kasch and A. Mader, Rings, Modules and the Totals, Frontiers in Mathematics, Birkh¨auser, 2004.
  • [5] D. Keskin, N. Orhan, P. Smith and R. Tribak, Some rings for which the cosingular submodule of every module is a direct summand, Turk. J. Math. 38, 649-657, 2014.
  • [6] D. Keskin and R. Tribak, When M-cosingular modules are projective, Vietnam J. Math. 33 (2), 214-221, 2005.
  • [7] G.O. Michler and O.E. Villamayor, On rings whose simple modules are injective, J. Algebra 25, 185-201, 1973.
  • [8] S.H. Mohamed and B.J.Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
  • [9] A.C. Özcan, On $GCO$-modules and $M$-small modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 51 (2), 25-36, 2002.
  • [10] A.C. Özcan, The torsion theory cogenerated by $\delta$-$M$-small modules and $GCO$-modules, Comm. Algebra 35 (2), 623-633, 2007.
  • [11] V.S. Ramamurthy and K.M. Rangaswamy, Generalized $V$-rings, Math. Scand. 31, 69-77, 1972.
  • [12] Y. Talebi and M.J. Nematollahi, Modules with $C^{*}$-condition, Taiwanese J. Math. 13 (5), 1451-1456, 2009.
  • [13] Y. Talebi and N. Vanaja, The torsion theory cogenerated by $M$-small modules, Comm. Algebra 30 (3), 1449-1460, 2002.
  • [14] R. Tribak and D. Keskin, On $\overline{Z}_M$-semiperfect modules, East-West J. Math. 8 (2), 193-203, 2006.
  • [15] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Y. Talebi 0000-0003-2311-4628

A. R. M. Hamzekolaee 0000-0002-2852-7870

M. Hosseinpour This is me 0000-0003-1389-6419

A. Harmanci 0000-0001-5691-933X

B. Ungor 0000-0001-7659-9185

Publication Date August 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 4

Cite

APA Talebi, Y., Hamzekolaee, A. R. M., Hosseinpour, M., Harmanci, A., et al. (2019). Rings for which every cosingular module is projective. Hacettepe Journal of Mathematics and Statistics, 48(4), 973-984.
AMA Talebi Y, Hamzekolaee ARM, Hosseinpour M, Harmanci A, Ungor B. Rings for which every cosingular module is projective. Hacettepe Journal of Mathematics and Statistics. August 2019;48(4):973-984.
Chicago Talebi, Y., A. R. M. Hamzekolaee, M. Hosseinpour, A. Harmanci, and B. Ungor. “Rings for Which Every Cosingular Module Is Projective”. Hacettepe Journal of Mathematics and Statistics 48, no. 4 (August 2019): 973-84.
EndNote Talebi Y, Hamzekolaee ARM, Hosseinpour M, Harmanci A, Ungor B (August 1, 2019) Rings for which every cosingular module is projective. Hacettepe Journal of Mathematics and Statistics 48 4 973–984.
IEEE Y. Talebi, A. R. M. Hamzekolaee, M. Hosseinpour, A. Harmanci, and B. Ungor, “Rings for which every cosingular module is projective”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, pp. 973–984, 2019.
ISNAD Talebi, Y. et al. “Rings for Which Every Cosingular Module Is Projective”. Hacettepe Journal of Mathematics and Statistics 48/4 (August 2019), 973-984.
JAMA Talebi Y, Hamzekolaee ARM, Hosseinpour M, Harmanci A, Ungor B. Rings for which every cosingular module is projective. Hacettepe Journal of Mathematics and Statistics. 2019;48:973–984.
MLA Talebi, Y. et al. “Rings for Which Every Cosingular Module Is Projective”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, 2019, pp. 973-84.
Vancouver Talebi Y, Hamzekolaee ARM, Hosseinpour M, Harmanci A, Ungor B. Rings for which every cosingular module is projective. Hacettepe Journal of Mathematics and Statistics. 2019;48(4):973-84.