Research Article
BibTex RIS Cite

Zariski subspace topologies on ideals

Year 2019, Volume: 48 Issue: 6, 1667 - 1674, 08.12.2019

Abstract

In this paper, we show how there are tight relationships between algebraic properties of a commutative ring $R$ and topological properties of open subsets of Zariski topology on the prime spectrum of $R$. We investigate some algebraic conditions for open subsets of Zariski topology to become quasi-compact, dense and irreducible. We also give a characterization for the radical of an ideal in $R$ by using topological properties.

References

  • [1] J. Abuhlail, A dual Zariski topology for modules, Topology Appl. 158, 457–467, 2011.
  • [2] H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of a module and Zariski Topologies, Comm. Algebra, 38, 4461–4475, 2010.
  • [3] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra, Addison- Wesley, 1969.
  • [4] N. Bourbaki, Elements of Mathematics General Topology Part 1 and Part 2, Hermann and Addison-Wesley, 1966.
  • [5] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhauser, 1985.
  • [6] T. Lam, Lectures on Modules and Rings, Springer-Verlag, 1998.
  • [7] C.P. Lu, Spectra of modules, Comm. Algebra, 23, 3741–3752, 1995.
  • [8] C.P. Lu, The Zariski Topology on The Prime Spectrum of a Module, Houston J. Math. 25, 417–432, 1999 .
  • [9] C.P. Lu, Modules with Noetherian Spectrum, Comm. Algebra, 38, 807–828, 2010.
  • [10] R.L. McCasland, M.E. Moore and P.F. Smith, Rings with Noetherian spectrum, Duke Math. J. 35, 631–639, 1968.
  • [11] R.L. McCasland, M.E. Moore and P.F. Smith, On the Spectrum of a Module over a Commutative Ring, Comm. Algebra, 25, 79–103, 1997.
  • [12] D.G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge University Press, 1968.
  • [13] O. Zariski and P. Samuel, Commutative Algebra Vol. 1, Springer-Verlag, 1975.
Year 2019, Volume: 48 Issue: 6, 1667 - 1674, 08.12.2019

Abstract

References

  • [1] J. Abuhlail, A dual Zariski topology for modules, Topology Appl. 158, 457–467, 2011.
  • [2] H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of a module and Zariski Topologies, Comm. Algebra, 38, 4461–4475, 2010.
  • [3] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra, Addison- Wesley, 1969.
  • [4] N. Bourbaki, Elements of Mathematics General Topology Part 1 and Part 2, Hermann and Addison-Wesley, 1966.
  • [5] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhauser, 1985.
  • [6] T. Lam, Lectures on Modules and Rings, Springer-Verlag, 1998.
  • [7] C.P. Lu, Spectra of modules, Comm. Algebra, 23, 3741–3752, 1995.
  • [8] C.P. Lu, The Zariski Topology on The Prime Spectrum of a Module, Houston J. Math. 25, 417–432, 1999 .
  • [9] C.P. Lu, Modules with Noetherian Spectrum, Comm. Algebra, 38, 807–828, 2010.
  • [10] R.L. McCasland, M.E. Moore and P.F. Smith, Rings with Noetherian spectrum, Duke Math. J. 35, 631–639, 1968.
  • [11] R.L. McCasland, M.E. Moore and P.F. Smith, On the Spectrum of a Module over a Commutative Ring, Comm. Algebra, 25, 79–103, 1997.
  • [12] D.G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge University Press, 1968.
  • [13] O. Zariski and P. Samuel, Commutative Algebra Vol. 1, Springer-Verlag, 1975.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ortaç Öneş This is me 0000-0001-6777-9192

Mustafa Alkan 0000-0002-4452-4442

Publication Date December 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 6

Cite

APA Öneş, O., & Alkan, M. (2019). Zariski subspace topologies on ideals. Hacettepe Journal of Mathematics and Statistics, 48(6), 1667-1674.
AMA Öneş O, Alkan M. Zariski subspace topologies on ideals. Hacettepe Journal of Mathematics and Statistics. December 2019;48(6):1667-1674.
Chicago Öneş, Ortaç, and Mustafa Alkan. “Zariski Subspace Topologies on Ideals”. Hacettepe Journal of Mathematics and Statistics 48, no. 6 (December 2019): 1667-74.
EndNote Öneş O, Alkan M (December 1, 2019) Zariski subspace topologies on ideals. Hacettepe Journal of Mathematics and Statistics 48 6 1667–1674.
IEEE O. Öneş and M. Alkan, “Zariski subspace topologies on ideals”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, pp. 1667–1674, 2019.
ISNAD Öneş, Ortaç - Alkan, Mustafa. “Zariski Subspace Topologies on Ideals”. Hacettepe Journal of Mathematics and Statistics 48/6 (December 2019), 1667-1674.
JAMA Öneş O, Alkan M. Zariski subspace topologies on ideals. Hacettepe Journal of Mathematics and Statistics. 2019;48:1667–1674.
MLA Öneş, Ortaç and Mustafa Alkan. “Zariski Subspace Topologies on Ideals”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, 2019, pp. 1667-74.
Vancouver Öneş O, Alkan M. Zariski subspace topologies on ideals. Hacettepe Journal of Mathematics and Statistics. 2019;48(6):1667-74.