Research Article
BibTex RIS Cite

Quasi regular modules and trivial extension

Year 2021, Volume: 50 Issue: 1, 120 - 134, 04.02.2021
https://doi.org/10.15672/hujms.613404

Abstract

Recall that a ring $R\ $is said to be a quasi regular ring if its total quotient ring $q(R)\ $is \textit{von Neumann regular}. It is well known that a ring $R\ $is quasi regular if and only if it is a reduced ring satisfying the property: for each $a\in R,$ $ann_{R}(ann_{R}(a))=ann_{R}(b)$ for some $b\in R$. Here, in this study, we extend the notion of quasi regular rings and rings which satisfy the aforementioned property to modules. We give many characterizations and properties of these two classes of modules. Moreover, we investigate the (weak) quasi regular property of trivial extension.

References

  • [1] D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1 (1), 3–56, 2009.
  • [2] D.F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra, 180 (3), 221–241, 2003.
  • [3] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16 (4), 755– 779, 1988.
  • [4] M. Evans, On commutative P.P. rings, Pac. J. Math. 41 (3), 687–697, 1972
  • [5] M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115, 110–130, 1965.
  • [6] J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York, 1988.
  • [7] C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math. 15 (8) 855–864, 1984.
  • [8] C. Jayaram and Ü. Tekir, von Neumann regular modules, Comm. Algebra, 46 (5), 2205–2217, 2018.
  • [9] T.K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras and abelian groups, in:Lect. Notes Pure Appl. Math. New York, NY: Marcel Dekker, 236, 365–377, 2004.
  • [10] R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra, 30 (2), 745–750, 2002.
  • [11] C.P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli, 33 (1), 61–69, 1984.
  • [12] R.L. McCasland and M.E. Moore, Prime submodules, Comm. Algebra, 20 (6), 1803– 1817, 1992.
  • [13] M. Nagata, Local rings, Interscience Publishers, New York, 1960.
  • [14] J. Von Neumann, On regular rings, Proc. Natl. Acad. Sci. 22 (12), 707–713, 1936.
Year 2021, Volume: 50 Issue: 1, 120 - 134, 04.02.2021
https://doi.org/10.15672/hujms.613404

Abstract

References

  • [1] D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1 (1), 3–56, 2009.
  • [2] D.F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra, 180 (3), 221–241, 2003.
  • [3] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16 (4), 755– 779, 1988.
  • [4] M. Evans, On commutative P.P. rings, Pac. J. Math. 41 (3), 687–697, 1972
  • [5] M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115, 110–130, 1965.
  • [6] J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York, 1988.
  • [7] C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math. 15 (8) 855–864, 1984.
  • [8] C. Jayaram and Ü. Tekir, von Neumann regular modules, Comm. Algebra, 46 (5), 2205–2217, 2018.
  • [9] T.K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras and abelian groups, in:Lect. Notes Pure Appl. Math. New York, NY: Marcel Dekker, 236, 365–377, 2004.
  • [10] R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra, 30 (2), 745–750, 2002.
  • [11] C.P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli, 33 (1), 61–69, 1984.
  • [12] R.L. McCasland and M.E. Moore, Prime submodules, Comm. Algebra, 20 (6), 1803– 1817, 1992.
  • [13] M. Nagata, Local rings, Interscience Publishers, New York, 1960.
  • [14] J. Von Neumann, On regular rings, Proc. Natl. Acad. Sci. 22 (12), 707–713, 1936.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Chillumuntala Jayaram This is me 0000-0001-8102-4976

Ünsal Tekir 0000-0003-0739-1449

Suat Koç 0000-0003-1622-786X

Publication Date February 4, 2021
Published in Issue Year 2021 Volume: 50 Issue: 1

Cite

APA Jayaram, C., Tekir, Ü., & Koç, S. (2021). Quasi regular modules and trivial extension. Hacettepe Journal of Mathematics and Statistics, 50(1), 120-134. https://doi.org/10.15672/hujms.613404
AMA Jayaram C, Tekir Ü, Koç S. Quasi regular modules and trivial extension. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):120-134. doi:10.15672/hujms.613404
Chicago Jayaram, Chillumuntala, Ünsal Tekir, and Suat Koç. “Quasi Regular Modules and Trivial Extension”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 120-34. https://doi.org/10.15672/hujms.613404.
EndNote Jayaram C, Tekir Ü, Koç S (February 1, 2021) Quasi regular modules and trivial extension. Hacettepe Journal of Mathematics and Statistics 50 1 120–134.
IEEE C. Jayaram, Ü. Tekir, and S. Koç, “Quasi regular modules and trivial extension”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 120–134, 2021, doi: 10.15672/hujms.613404.
ISNAD Jayaram, Chillumuntala et al. “Quasi Regular Modules and Trivial Extension”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 120-134. https://doi.org/10.15672/hujms.613404.
JAMA Jayaram C, Tekir Ü, Koç S. Quasi regular modules and trivial extension. Hacettepe Journal of Mathematics and Statistics. 2021;50:120–134.
MLA Jayaram, Chillumuntala et al. “Quasi Regular Modules and Trivial Extension”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 120-34, doi:10.15672/hujms.613404.
Vancouver Jayaram C, Tekir Ü, Koç S. Quasi regular modules and trivial extension. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):120-34.

Cited By

On morphic modules over commutative rings
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
https://doi.org/10.1007/s13366-022-00672-w

On $$\phi$$-$$\delta$$-Primary Submodules
Iranian Journal of Science and Technology, Transactions A: Science
https://doi.org/10.1007/s40995-022-01271-z





On $$\phi $$-1-absorbing prime ideals
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
https://doi.org/10.1007/s13366-020-00557-w