Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 2, 516 - 525, 11.04.2021
https://doi.org/10.15672/hujms.730907

Abstract

References

  • [1] I. Amin, Y. Ibrahim and M .F. Yousif, $C3$-modules, Algebra Colloq. 22 (4), 655–670, 2015.
  • [2] I. Amin, M.F. Yousif and N. Zeyada, Soc-injective rings and modules, Commun. Algebra, 33, 4229–4250, 2005.
  • [3] F.W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
  • [4] K.I. Beidar and W. F. Ke, On essential extensions of direct sums of injective modules, Archiv. Math. 78, 120–123, 2002.
  • [5] V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective modules, J. Algebra 420, 39–53, 2014.
  • [6] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules, Pitman Research Notes in Math. 313, Longman, Harlow, New York, 1994.
  • [7] E.E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39, 189–209, 1981.
  • [8] J.W. Fisher, Von Neumann regular rings versus V-rings, in: Lect. Notes Pure Appl. Math. 7, 101–119, Dekker, New York, 1974.
  • [9] K.R. Goodearl, Von Neumann Regular Rings, Krieger Publishing Company, Malabar, Florida, 1991.
  • [10] J. Hausen, Modules with the summand intersection property, Commun. Alg. 17, 135– 148, 1989.
  • [11] Y. Ibrahim, M.T. Koşan, M. Yousif and T.C. Quynh, Simple-direct-projective modules, Commun. Algebra, 44 (12), 5163–5178, 2014.
  • [12] Y. Ibrahim, T.C. Quynh and M. Yousif, Simple-direct-modules, Commun. Algebra, 45 (8), 3643–3652, 2017.
  • [13] S.H. Mohammed and B.J. Müller, Continous and Discrete Modules, London Math. Soc. LN 147, Cambridge Univ. Press., 1990.
  • [14] W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings, Cambridge Univ. Press., 2003.
  • [15] T.C. Quynh and M.T. Koşan, On annihilators and quasi-Frobenius rings, submitted.
  • [16] S. Sahinkaya and J. Trlifaj, Generalized injectivity and approximations, Commun. Algebra, 44 (9), 4047–4055, 2014.
  • [17] G.V. Wilson, Modules with the Direct Summand Intersection Property, Comm. Alg. 14, 21–38, 1986.
  • [18] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.

Semisimple-direct-injective modules

Year 2021, Volume: 50 Issue: 2, 516 - 525, 11.04.2021
https://doi.org/10.15672/hujms.730907

Abstract

The notion of simple-direct-injective modules which are a generalization of injective modules unifies $C2$ and $C3$-modules. In the present paper, we introduce the notion of the semisimple-direct-injective module which gives a unified viewpoint of $C2$, $C3$, SSP properties and simple-direct-injective modules. It is proved that a ring $R$ is Artinian serial with the Jacobson radical square zero if and only if every semisimple-direct-injective right $R$-module has the SSP and, for any family of simple injective right $R$-modules $\{S_i\}_{\mathcal{I}}$, $\oplus_{\mathcal{I}}S_i$ is injective. We also show that $R$ is a right Noetherian right V-ring if and only if every right $R$-module has a semisimple-direct-injective envelope if and only if every right $R$-module has a semisimple-direct-injective cover.

References

  • [1] I. Amin, Y. Ibrahim and M .F. Yousif, $C3$-modules, Algebra Colloq. 22 (4), 655–670, 2015.
  • [2] I. Amin, M.F. Yousif and N. Zeyada, Soc-injective rings and modules, Commun. Algebra, 33, 4229–4250, 2005.
  • [3] F.W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
  • [4] K.I. Beidar and W. F. Ke, On essential extensions of direct sums of injective modules, Archiv. Math. 78, 120–123, 2002.
  • [5] V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective modules, J. Algebra 420, 39–53, 2014.
  • [6] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules, Pitman Research Notes in Math. 313, Longman, Harlow, New York, 1994.
  • [7] E.E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39, 189–209, 1981.
  • [8] J.W. Fisher, Von Neumann regular rings versus V-rings, in: Lect. Notes Pure Appl. Math. 7, 101–119, Dekker, New York, 1974.
  • [9] K.R. Goodearl, Von Neumann Regular Rings, Krieger Publishing Company, Malabar, Florida, 1991.
  • [10] J. Hausen, Modules with the summand intersection property, Commun. Alg. 17, 135– 148, 1989.
  • [11] Y. Ibrahim, M.T. Koşan, M. Yousif and T.C. Quynh, Simple-direct-projective modules, Commun. Algebra, 44 (12), 5163–5178, 2014.
  • [12] Y. Ibrahim, T.C. Quynh and M. Yousif, Simple-direct-modules, Commun. Algebra, 45 (8), 3643–3652, 2017.
  • [13] S.H. Mohammed and B.J. Müller, Continous and Discrete Modules, London Math. Soc. LN 147, Cambridge Univ. Press., 1990.
  • [14] W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings, Cambridge Univ. Press., 2003.
  • [15] T.C. Quynh and M.T. Koşan, On annihilators and quasi-Frobenius rings, submitted.
  • [16] S. Sahinkaya and J. Trlifaj, Generalized injectivity and approximations, Commun. Algebra, 44 (9), 4047–4055, 2014.
  • [17] G.V. Wilson, Modules with the Direct Summand Intersection Property, Comm. Alg. 14, 21–38, 1986.
  • [18] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Adel Abyzov This is me 0000-0002-9809-2091

Muhammet Tamer Koşan 0000-0002-5071-4568

Truong Cong Quynh 0000-0002-0845-0175

Daniel Tapkin This is me 0000-0003-0828-4397

Publication Date April 11, 2021
Published in Issue Year 2021 Volume: 50 Issue: 2

Cite

APA Abyzov, A., Koşan, M. T., Quynh, T. C., Tapkin, D. (2021). Semisimple-direct-injective modules. Hacettepe Journal of Mathematics and Statistics, 50(2), 516-525. https://doi.org/10.15672/hujms.730907
AMA Abyzov A, Koşan MT, Quynh TC, Tapkin D. Semisimple-direct-injective modules. Hacettepe Journal of Mathematics and Statistics. April 2021;50(2):516-525. doi:10.15672/hujms.730907
Chicago Abyzov, Adel, Muhammet Tamer Koşan, Truong Cong Quynh, and Daniel Tapkin. “Semisimple-Direct-Injective Modules”. Hacettepe Journal of Mathematics and Statistics 50, no. 2 (April 2021): 516-25. https://doi.org/10.15672/hujms.730907.
EndNote Abyzov A, Koşan MT, Quynh TC, Tapkin D (April 1, 2021) Semisimple-direct-injective modules. Hacettepe Journal of Mathematics and Statistics 50 2 516–525.
IEEE A. Abyzov, M. T. Koşan, T. C. Quynh, and D. Tapkin, “Semisimple-direct-injective modules”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, pp. 516–525, 2021, doi: 10.15672/hujms.730907.
ISNAD Abyzov, Adel et al. “Semisimple-Direct-Injective Modules”. Hacettepe Journal of Mathematics and Statistics 50/2 (April 2021), 516-525. https://doi.org/10.15672/hujms.730907.
JAMA Abyzov A, Koşan MT, Quynh TC, Tapkin D. Semisimple-direct-injective modules. Hacettepe Journal of Mathematics and Statistics. 2021;50:516–525.
MLA Abyzov, Adel et al. “Semisimple-Direct-Injective Modules”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, 2021, pp. 516-25, doi:10.15672/hujms.730907.
Vancouver Abyzov A, Koşan MT, Quynh TC, Tapkin D. Semisimple-direct-injective modules. Hacettepe Journal of Mathematics and Statistics. 2021;50(2):516-25.

Cited By