Research Article
BibTex RIS Cite

Linear algebra of the Lucas matrix

Year 2021, Volume: 50 Issue: 2, 549 - 558, 11.04.2021
https://doi.org/10.15672/hujms.746184

Abstract

In this paper, we give the factorizations of the Lucas and inverse Lucas matrices. We also investigate the Cholesky factorization of the symmetric Lucas matrix. Moreover, we obtain the upper and lower bounds for the eigenvalues of the symmetric Lucas matrix by using some majorization techniques.

References

  • [1] C.M. Fonseca and E. Kılıç, An observation on the determinant of a Sylvester-Kac type matrix, An. Univ. "Ovidius" Constanta Ser. Mat. 28 (1), 111–115, 2020.
  • [2] C.M. Fonseca and Kılıç, A new type of Sylvester–Kac matrix and its spectrum, https://doi.org/10.1080/03081087.2019.1620673.
  • [3] G.H. Hardy, J.E. Littlewood and G. Pólya, Some simple inequalities satisfied by con- vex functions, Messenger Math. 58, 145–152, 1929.
  • [4] C.R. Johnson and R.A. Horn, Matrix analysis, Cambridge University Press Cam- bridge, 1985.
  • [5] E. Kilic and D. Tasci, The linear algebra of the Pell matrix, Bol. Soc. Mat. Mex. 11 (3), 163–174, 2005.
  • [6] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001.
  • [7] G.-Y. Lee, J.-S. Kim and S.-G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. 40 (3), 203–211, 2002.
  • [8] G.-Y. Lee and J.-S. Kim, The linear algebra of the k−Fibonacci matrix, Linear Algebra Appl. 373, 75–87, 2003.
  • [9] A.W. Marshall, I. Olkin and B.C. Arnold, Inequalities: theory of majorization and its applications 143, Springer, 1979.
  • [10] P. Stanica, Cholesky factorizations of matrices associated with r−order recurrent se- quences, Integers, 5 (2), A16, 2005.
  • [11] Z. Zhang and Y. Zhang, The Lucas matrix and some combinatorial identities, Indian J. Pure Appl. Math. 38 (5), 457–465, 2007.
Year 2021, Volume: 50 Issue: 2, 549 - 558, 11.04.2021
https://doi.org/10.15672/hujms.746184

Abstract

References

  • [1] C.M. Fonseca and E. Kılıç, An observation on the determinant of a Sylvester-Kac type matrix, An. Univ. "Ovidius" Constanta Ser. Mat. 28 (1), 111–115, 2020.
  • [2] C.M. Fonseca and Kılıç, A new type of Sylvester–Kac matrix and its spectrum, https://doi.org/10.1080/03081087.2019.1620673.
  • [3] G.H. Hardy, J.E. Littlewood and G. Pólya, Some simple inequalities satisfied by con- vex functions, Messenger Math. 58, 145–152, 1929.
  • [4] C.R. Johnson and R.A. Horn, Matrix analysis, Cambridge University Press Cam- bridge, 1985.
  • [5] E. Kilic and D. Tasci, The linear algebra of the Pell matrix, Bol. Soc. Mat. Mex. 11 (3), 163–174, 2005.
  • [6] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001.
  • [7] G.-Y. Lee, J.-S. Kim and S.-G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. 40 (3), 203–211, 2002.
  • [8] G.-Y. Lee and J.-S. Kim, The linear algebra of the k−Fibonacci matrix, Linear Algebra Appl. 373, 75–87, 2003.
  • [9] A.W. Marshall, I. Olkin and B.C. Arnold, Inequalities: theory of majorization and its applications 143, Springer, 1979.
  • [10] P. Stanica, Cholesky factorizations of matrices associated with r−order recurrent se- quences, Integers, 5 (2), A16, 2005.
  • [11] Z. Zhang and Y. Zhang, The Lucas matrix and some combinatorial identities, Indian J. Pure Appl. Math. 38 (5), 457–465, 2007.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Nurettin Irmak 0000-0003-0409-4342

Cahit Köme 0000-0002-6488-9035

Publication Date April 11, 2021
Published in Issue Year 2021 Volume: 50 Issue: 2

Cite

APA Irmak, N., & Köme, C. (2021). Linear algebra of the Lucas matrix. Hacettepe Journal of Mathematics and Statistics, 50(2), 549-558. https://doi.org/10.15672/hujms.746184
AMA Irmak N, Köme C. Linear algebra of the Lucas matrix. Hacettepe Journal of Mathematics and Statistics. April 2021;50(2):549-558. doi:10.15672/hujms.746184
Chicago Irmak, Nurettin, and Cahit Köme. “Linear Algebra of the Lucas Matrix”. Hacettepe Journal of Mathematics and Statistics 50, no. 2 (April 2021): 549-58. https://doi.org/10.15672/hujms.746184.
EndNote Irmak N, Köme C (April 1, 2021) Linear algebra of the Lucas matrix. Hacettepe Journal of Mathematics and Statistics 50 2 549–558.
IEEE N. Irmak and C. Köme, “Linear algebra of the Lucas matrix”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, pp. 549–558, 2021, doi: 10.15672/hujms.746184.
ISNAD Irmak, Nurettin - Köme, Cahit. “Linear Algebra of the Lucas Matrix”. Hacettepe Journal of Mathematics and Statistics 50/2 (April 2021), 549-558. https://doi.org/10.15672/hujms.746184.
JAMA Irmak N, Köme C. Linear algebra of the Lucas matrix. Hacettepe Journal of Mathematics and Statistics. 2021;50:549–558.
MLA Irmak, Nurettin and Cahit Köme. “Linear Algebra of the Lucas Matrix”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, 2021, pp. 549-58, doi:10.15672/hujms.746184.
Vancouver Irmak N, Köme C. Linear algebra of the Lucas matrix. Hacettepe Journal of Mathematics and Statistics. 2021;50(2):549-58.