Year 2021,
Volume: 50 Issue: 3, 872 - 894, 07.06.2021
Orhan Kesemen
,
Buğra Kaan Tiryaki
,
Özge Tezel
,
Eda Özkul
References
- [1] K. Alam, R. Abernathy and C.L. Williams, Multivariate goodness-of-fit tests based
on statistically equivalent blocks, Comm. Statist. Theory Methods 22 (6), 1515-1533,
1993.
- [2] K. Alam and C.L. Williams, A multivariate goodness-of-fit test for stochastically ordered
distributions, Biom. J. 37 (8), 945-956, 1995.
- [3] F.R. Bach and M.I. Jordan, Kernel independent component analysis, J. Mach. Learn.
Res. 3 (Jul), 1-48, 2002.
- [4] L. Baringhaus and N. Henze, A consistent test for multivariate normality based on
the empirical characteristic function, Metrika 35 (1), 339-348, 1988.
- [5] H. Bozdogan and D.E. Ramirez, Testing for model fit: Assessing the Box–Cox transformations
of multivariate data to nearnormality, Comput. Stat. Q. 3, 127-150, 1986.
- [6] A. Cabaña and E.M. Cabaña, Transformed empirical processes and modified
Kolmogorov-Smirnov tests for multivariate distributions, Ann. Statist. 25 (6), 2388-
2409, 1997.
- [7] R. Chicheportiche and J.P. Bouchaud, Goodness-of-fit tests with dependent observations,
J. Stat. Mech. Theory Exp. 9, P09003, 2011.
- [8] S.N. Chiu and K.I. Liu, Generalized Cramér-von Mises goodness-of-fit tests for multivariate
distributions, Comput. Statist. Data Anal. 53 (11), 3817-3834, 2009.
- [9] W.G. Cochran, The χ2 test of goodness of fit, Ann. Math. Statist. 23 (3), 315-345,
1952.
- [10] H. Cramér, On the composition of elementary errors: First paper: Mathematical
deductions, Scand. Actuar. J. 1928 (1), 13-74, 1928.
- [11] S. Csorgo, Testing for normality in arbitrary dimension, Ann. Statist. 14 (2), 708-723,
1986.
- [12] S. Facchinetti, A procedure to find exact critical values of Kolmogorov-Smirnov test,
Statistica Applicata – Italian Journal of Applied Statistics 21 (34), 337–359, 2009.
- [13] Y. Fan, Goodness-of-fit tests for a multivariate distribution by the empirical characteristic
function, J. Multivariate Anal. 62 (1), 36-63, 1997.
- [14] G. Fasano and A. Franceschini, A multidimensional version of the Kolmogorov-
Smirnov test, Mon. Notices Royal Astron. Soc. 225 (1), 155-170, 1987.
- [15] S. Ghosh and F.H. Ruymgaart, Applications of empirical characteristic functions in
some multivariate problems, Canad. J. Statist. 20 (4), 429-440, 1992.
- [16] A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis, John Wiley
& Sons, 2004.
- [17] R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, 5th ed.,
Prentice Hall, New Jersey, 2001.
- [18] A. Justel, D. Peña and R. Zamar, A multivariate Kolmogorov-Smirnov test of goodness
of fit, Statist. Probab. Lett. 35 (3), 251-259, 1997.
- [19] J.F. Kenneys, Mathematics of Statistics, D. Van Nostrand Company Inc, 2013.
- [20] A. Kolmogorov, Sulla determinazione empirica di una lgge di distribuzione (in Italian),
G. Inst. Ital. Attuari 4 (1933), 83-91, 1933.
- [21] J.A. Koziol, Assessing multivariate normality: A compendium, Comm. Statist. Theory
Methods 15 (9), 2763-2783, 1986.
- [22] N.H. Kuiper, Tests concerning random points on a circle, Nederl. Akad. Wetensch.
Proc. Ser. A 63 (1), 38-47, 1960.
- [23] H.W. Lilliefors, On the Kolmogorov-Smirnov test for normality with mean and variance
unknown, J. Amer. Statist. Assoc. 62 (318), 399-402, 1967.
- [24] S.W. Looney, How to use tests for univariate normality to assess multivariate normality,
Amer. Statist. 49 (1), 64-70, 1995.
- [25] R. Lopes, I. Reid and P. Hobson, The two-dimensional Kolmogorov-Smirnov test,
Proceedings of XI International Workshop on Advanced Computing and Analysis
Techniques in Physics Research, Amsterdam, The Netherlands, 2007.
- [26] J.F. Malkovich and A.A. Afifi, On tests for multivariate normality, J. Amer. Statist.
Assoc. 68 (341), 176-179, 1973.
- [27] K.V. Mardia, Measures of multivariate skewness and kurtosis with applications,
Biometrika 57 (3), 519-530, 1970.
- [28] K.V Mardia and J.T. Kent, Multivariate Analysis, Academic Press, London, 1979.
- [29] K.V. Mardia and J.T. Kent, Rao score tests for goodness of fit and independence,
Biometrika 78 (2), 355-363, 1991.
- [30] J.R. Massey and J. Frank, The Kolmogorov-Smirnov test for goodness of fit, J. Amer.
Statist. Assoc. 46 (253), 68-78, 1951.
- [31] M.P. McAssey, An empirical goodness-of-fit test for multivariate distributions, J.
Appl. Stat. 40 (5), 1120-1131, 2013.
- [32] M.S. Mecibah, T.E. Boukelia, R. Tahtah and K. Gairaa, Introducing the best model
for estimation the monthly mean daily global solar radiation on a horizontal surface
(Case study: Algeria), Renew. Sust. Energ. Rev. 36, 194-202, 2014.
- [33] D.S. Moore and J.B. Stubblebine, Chi-square tests for multivariate normality with
application to common stock prices, Comm. Statist. Theory Methods 10 (8), 713-738,
1981.
- [34] G.S. Mudholkar, M. McDermott and D.K. Srivastava, A test of p-variate normality,
Biometrika 79 (4), 850-854, 1992.
- [35] A. Novobilski and F. Kamangar, Absolute Percent Error Based Fitness Functions for
Evolving Forecast Models, Proceedings of FLAIRS Conference, FL, USA, 591-595,
2001.
- [36] J.A. Peacock, Two-dimensional goodness-of-fit testing in astronomy, Mon. Notices
Royal Astron. Soc. 202 (3), 615-627, 1983.
- [37] N.M. Razali and Y.B. Wah, Power comparisons of Shapiro-Wilk, Kolmogorov-
Smirnov, Lilliefors and Anderson-Darling tests, Journal of Statistical Modeling and
Analytics 2 (1), 21-33, 2011.
- [38] J.L. Romeu and A. Ozturk, A comparative study of goodness-of-fit tests for multivariate
normality, J. Multivariate Anal. 46 (2), 309-334, 1993.
- [39] M. Rosenblatt, Remarks on a multivariate transformation, Ann. Math. Statist. 23
(3), 470-472, 1952.
- [40] J.P. Royston, Some techniques for assessing multivarate normality based on the
Shapiro-Wilk W, J. R. Stat. Soc. Ser. C. Appl. Stat. 32 (2), 121-133, 1983.
- [41] N.J. Small, Marginal skewness and kurtosis in testing multivariate normality, J. R.
Stat. Soc. Ser. C. Appl. Stat. 29, 85-87, 1980.
- [42] N.V. Smirnov, On the estimation of the discrepancy between empirical curves of distribution
for two independent samples, Bull. Math. Univ. Moscou 2 (2), 3-14, 1939.
- [43] M.S. Srivastava, A measure of skewness and kurtosis and a graphical method for
assessing multivariate normality, Statist. Probab. Lett. 2 (5), 263-267, 1984.
- [44] M.S. Srivastava and T.K. Hui, On assessing multivariate normality based on Shapiro-
Wilk W statistic, Statist. Probab. Lett. 5 (1), 15-18, 1987.
- [45] B. Sürücü, Goodness-of-fit tests for multivariate distributions, Comm. Statist. Theory
Methods 35 (7), 1319-1331, 2006.
- [46] G.J. Székely and M.L. Rizzo, A new test for multivariate normality, J. Multivariate
Anal. 93 (1), 58-80, 2005.
- [47] R. Von Mises, Wahrscheinlichkeitsrechnung und ihre anwendung in der statistik und
theorestischen physik, Leipzig, Deutsche, 1931.
- [48] C. Zhang, Y. Xiang and X. Shen, Some multivariate goodness-of-fit tests based on
data depth, J. Appl. Stat. 39 (2), 385-397, 2012.
- [49] M. Zhou and Y. Shao, A powerful test for multivariate normality, J. Appl. Stat. 41
(2), 351-363, 2014.
A new goodness of fit test for multivariate normality
Year 2021,
Volume: 50 Issue: 3, 872 - 894, 07.06.2021
Orhan Kesemen
,
Buğra Kaan Tiryaki
,
Özge Tezel
,
Eda Özkul
Abstract
This paper presents a multivariate Kolmogorov-Smirnov (MVKS) goodness of fit test for multivariate normality. The proposed test is based on the difference between the empirical distribution function and the theoretical distribution function. While calculating them in multivariate case, the problem is that the variables cannot be distribution-free as in the univariate case. Firstly, the variables are made independent to solve this problem and the Rosenblatt transform is applied for independence of variates. Then the theoretical and empirical distribution values are calculated and the MVKS test statistic is computed. It provides an easy calculation for d-dimensional data by using the same algorithm and critical table values. This paper demonstrates the effectiveness of the MVKS for different dimensions with a simulation study which also includes the comparison of the MVKS critical tables with univariate Kolmogorov-Smirnov (KS) critical table and the power comparisons of the MVKS (bivariate case) against with the existing bivariate normality tests. Lastly, the MVKS is applied to two different multivariate data sets to confirm that it achieves consistent, accurate and correct results.
References
- [1] K. Alam, R. Abernathy and C.L. Williams, Multivariate goodness-of-fit tests based
on statistically equivalent blocks, Comm. Statist. Theory Methods 22 (6), 1515-1533,
1993.
- [2] K. Alam and C.L. Williams, A multivariate goodness-of-fit test for stochastically ordered
distributions, Biom. J. 37 (8), 945-956, 1995.
- [3] F.R. Bach and M.I. Jordan, Kernel independent component analysis, J. Mach. Learn.
Res. 3 (Jul), 1-48, 2002.
- [4] L. Baringhaus and N. Henze, A consistent test for multivariate normality based on
the empirical characteristic function, Metrika 35 (1), 339-348, 1988.
- [5] H. Bozdogan and D.E. Ramirez, Testing for model fit: Assessing the Box–Cox transformations
of multivariate data to nearnormality, Comput. Stat. Q. 3, 127-150, 1986.
- [6] A. Cabaña and E.M. Cabaña, Transformed empirical processes and modified
Kolmogorov-Smirnov tests for multivariate distributions, Ann. Statist. 25 (6), 2388-
2409, 1997.
- [7] R. Chicheportiche and J.P. Bouchaud, Goodness-of-fit tests with dependent observations,
J. Stat. Mech. Theory Exp. 9, P09003, 2011.
- [8] S.N. Chiu and K.I. Liu, Generalized Cramér-von Mises goodness-of-fit tests for multivariate
distributions, Comput. Statist. Data Anal. 53 (11), 3817-3834, 2009.
- [9] W.G. Cochran, The χ2 test of goodness of fit, Ann. Math. Statist. 23 (3), 315-345,
1952.
- [10] H. Cramér, On the composition of elementary errors: First paper: Mathematical
deductions, Scand. Actuar. J. 1928 (1), 13-74, 1928.
- [11] S. Csorgo, Testing for normality in arbitrary dimension, Ann. Statist. 14 (2), 708-723,
1986.
- [12] S. Facchinetti, A procedure to find exact critical values of Kolmogorov-Smirnov test,
Statistica Applicata – Italian Journal of Applied Statistics 21 (34), 337–359, 2009.
- [13] Y. Fan, Goodness-of-fit tests for a multivariate distribution by the empirical characteristic
function, J. Multivariate Anal. 62 (1), 36-63, 1997.
- [14] G. Fasano and A. Franceschini, A multidimensional version of the Kolmogorov-
Smirnov test, Mon. Notices Royal Astron. Soc. 225 (1), 155-170, 1987.
- [15] S. Ghosh and F.H. Ruymgaart, Applications of empirical characteristic functions in
some multivariate problems, Canad. J. Statist. 20 (4), 429-440, 1992.
- [16] A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis, John Wiley
& Sons, 2004.
- [17] R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, 5th ed.,
Prentice Hall, New Jersey, 2001.
- [18] A. Justel, D. Peña and R. Zamar, A multivariate Kolmogorov-Smirnov test of goodness
of fit, Statist. Probab. Lett. 35 (3), 251-259, 1997.
- [19] J.F. Kenneys, Mathematics of Statistics, D. Van Nostrand Company Inc, 2013.
- [20] A. Kolmogorov, Sulla determinazione empirica di una lgge di distribuzione (in Italian),
G. Inst. Ital. Attuari 4 (1933), 83-91, 1933.
- [21] J.A. Koziol, Assessing multivariate normality: A compendium, Comm. Statist. Theory
Methods 15 (9), 2763-2783, 1986.
- [22] N.H. Kuiper, Tests concerning random points on a circle, Nederl. Akad. Wetensch.
Proc. Ser. A 63 (1), 38-47, 1960.
- [23] H.W. Lilliefors, On the Kolmogorov-Smirnov test for normality with mean and variance
unknown, J. Amer. Statist. Assoc. 62 (318), 399-402, 1967.
- [24] S.W. Looney, How to use tests for univariate normality to assess multivariate normality,
Amer. Statist. 49 (1), 64-70, 1995.
- [25] R. Lopes, I. Reid and P. Hobson, The two-dimensional Kolmogorov-Smirnov test,
Proceedings of XI International Workshop on Advanced Computing and Analysis
Techniques in Physics Research, Amsterdam, The Netherlands, 2007.
- [26] J.F. Malkovich and A.A. Afifi, On tests for multivariate normality, J. Amer. Statist.
Assoc. 68 (341), 176-179, 1973.
- [27] K.V. Mardia, Measures of multivariate skewness and kurtosis with applications,
Biometrika 57 (3), 519-530, 1970.
- [28] K.V Mardia and J.T. Kent, Multivariate Analysis, Academic Press, London, 1979.
- [29] K.V. Mardia and J.T. Kent, Rao score tests for goodness of fit and independence,
Biometrika 78 (2), 355-363, 1991.
- [30] J.R. Massey and J. Frank, The Kolmogorov-Smirnov test for goodness of fit, J. Amer.
Statist. Assoc. 46 (253), 68-78, 1951.
- [31] M.P. McAssey, An empirical goodness-of-fit test for multivariate distributions, J.
Appl. Stat. 40 (5), 1120-1131, 2013.
- [32] M.S. Mecibah, T.E. Boukelia, R. Tahtah and K. Gairaa, Introducing the best model
for estimation the monthly mean daily global solar radiation on a horizontal surface
(Case study: Algeria), Renew. Sust. Energ. Rev. 36, 194-202, 2014.
- [33] D.S. Moore and J.B. Stubblebine, Chi-square tests for multivariate normality with
application to common stock prices, Comm. Statist. Theory Methods 10 (8), 713-738,
1981.
- [34] G.S. Mudholkar, M. McDermott and D.K. Srivastava, A test of p-variate normality,
Biometrika 79 (4), 850-854, 1992.
- [35] A. Novobilski and F. Kamangar, Absolute Percent Error Based Fitness Functions for
Evolving Forecast Models, Proceedings of FLAIRS Conference, FL, USA, 591-595,
2001.
- [36] J.A. Peacock, Two-dimensional goodness-of-fit testing in astronomy, Mon. Notices
Royal Astron. Soc. 202 (3), 615-627, 1983.
- [37] N.M. Razali and Y.B. Wah, Power comparisons of Shapiro-Wilk, Kolmogorov-
Smirnov, Lilliefors and Anderson-Darling tests, Journal of Statistical Modeling and
Analytics 2 (1), 21-33, 2011.
- [38] J.L. Romeu and A. Ozturk, A comparative study of goodness-of-fit tests for multivariate
normality, J. Multivariate Anal. 46 (2), 309-334, 1993.
- [39] M. Rosenblatt, Remarks on a multivariate transformation, Ann. Math. Statist. 23
(3), 470-472, 1952.
- [40] J.P. Royston, Some techniques for assessing multivarate normality based on the
Shapiro-Wilk W, J. R. Stat. Soc. Ser. C. Appl. Stat. 32 (2), 121-133, 1983.
- [41] N.J. Small, Marginal skewness and kurtosis in testing multivariate normality, J. R.
Stat. Soc. Ser. C. Appl. Stat. 29, 85-87, 1980.
- [42] N.V. Smirnov, On the estimation of the discrepancy between empirical curves of distribution
for two independent samples, Bull. Math. Univ. Moscou 2 (2), 3-14, 1939.
- [43] M.S. Srivastava, A measure of skewness and kurtosis and a graphical method for
assessing multivariate normality, Statist. Probab. Lett. 2 (5), 263-267, 1984.
- [44] M.S. Srivastava and T.K. Hui, On assessing multivariate normality based on Shapiro-
Wilk W statistic, Statist. Probab. Lett. 5 (1), 15-18, 1987.
- [45] B. Sürücü, Goodness-of-fit tests for multivariate distributions, Comm. Statist. Theory
Methods 35 (7), 1319-1331, 2006.
- [46] G.J. Székely and M.L. Rizzo, A new test for multivariate normality, J. Multivariate
Anal. 93 (1), 58-80, 2005.
- [47] R. Von Mises, Wahrscheinlichkeitsrechnung und ihre anwendung in der statistik und
theorestischen physik, Leipzig, Deutsche, 1931.
- [48] C. Zhang, Y. Xiang and X. Shen, Some multivariate goodness-of-fit tests based on
data depth, J. Appl. Stat. 39 (2), 385-397, 2012.
- [49] M. Zhou and Y. Shao, A powerful test for multivariate normality, J. Appl. Stat. 41
(2), 351-363, 2014.