Year 2021,
Volume: 50 Issue: 4, 1012 - 1027, 06.08.2021
Nurgül Kalaycı
,
Murat Sarduvan
References
- [1] C. Bu and Y. Zhou, Involutory and s+1 potency of linear combinations of a tripotent
matrix and an arbitrary matrix, J. Appl. Math. Inform. 29 (1–2), 485-495, 2011.
- [2] X. Liu, J. Benítez and M. Zhang, Involutiveness of linear combinations of a quadratic
or tripotent matrix and an arbitrary matrix, Bull. Iranian Math. Soc. 42 (3), 595-610,
2016.
- [3] H. Özdemir and T. Petik, On spectra of some matrices derived from two quadratic
matrices, Bull. Iranian Math. Soc. 39 (2), 225-238, 2013.
- [4] H. Özdemir and M. Sarduvan, Notes on linear combinations of two tripotent, idempotent,
and involutive matrices that commute, An. Ştiint. Univ. “Ovidius" Constanta
Ser. Mat. 16, 83-90, 2008.
- [5] T. Petik, H. Özdemir and J. Benítez, On the spectra of some combinations of two
generalized quadratic matrices, Appl. Math. Comput. 268, 978-990, 2015.
- [6] T. Petik, M. Uç and H. Özdemir, Generalized quadraticity of linear combination of
two generalized quadratic matrices, Linear Multilinear Algebra 63 (12), 2430-2439,
2015.
- [7] M. Sarduvan and H. Özdemir, On linear combinations of two tripotent, idempotent,
and involutive matrices, Appl. Math. Comput. 200 (1), 401-406, 2008.
- [8] M. Sarduvan and N. Kalaycı, On idempotency of linear combinations of a quadratic
or a cubic matrix and an arbitrary matrix, Filomat 33 (10), 3161-3185, 2019.
- [9] M. Tošić, On some linear combinations of commuting involutive and idempotent matrices,
Appl. Math. Comput. 233, 103-108, 2014.
- [10] M. Uç, H. Özdemir and A.Y. Özban, On the quadraticity of linear combinations of
quadratic matrices, Linear Multilinear Algebra 63 (6), 1125-1137, 2015.
- [11] M. Uç, T. Petik and H. Özdemir, The generalized quadraticity of linear combinations
of two commuting quadratic matrices, Linear Multilinear Algebra 64 (9), 1696-1715,
2016.
- [12] Y. Wu, K–potent matrices–construction and applications in digital image encryption,
Recent Advances in Applied Mathematics, AMERICAN-MATH’10 Proceedings of
the 2010 American Conference on Applied Mathematics, USA, 455-460, 2010.
- [13] C. Xu, On idempotency, involution and nilpotency of a linear combination of two
matrices, Linear Multilinear Algebra 63 (8), 1664-1677, 2015.
- [14] C. Xu and R. Xu, Tripotency of a linear combination of two involutory matrices and
a tripotent matrix that mutually commute, Linear Algebra Appl. 437 (9), 2091-2109,
2012.
On involutiveness of linear combinations of a quadratic matrix and an arbitrary matrix
Year 2021,
Volume: 50 Issue: 4, 1012 - 1027, 06.08.2021
Nurgül Kalaycı
,
Murat Sarduvan
Abstract
We characterize the involutiveness of the linear combinations of the form $a{\mathbf{A}} + b{\mathbf{B}}$ when $a,b$ are nonzero complex numbers, ${\mathbf{A}}$ is a quadratic $n \times n$ nonzero matrix and ${\mathbf{B}}$ is an arbitrary $n \times n$ nonzero matrix, under certain properties imposed on $\mathbf{A}$ and $\mathbf{B}$.
References
- [1] C. Bu and Y. Zhou, Involutory and s+1 potency of linear combinations of a tripotent
matrix and an arbitrary matrix, J. Appl. Math. Inform. 29 (1–2), 485-495, 2011.
- [2] X. Liu, J. Benítez and M. Zhang, Involutiveness of linear combinations of a quadratic
or tripotent matrix and an arbitrary matrix, Bull. Iranian Math. Soc. 42 (3), 595-610,
2016.
- [3] H. Özdemir and T. Petik, On spectra of some matrices derived from two quadratic
matrices, Bull. Iranian Math. Soc. 39 (2), 225-238, 2013.
- [4] H. Özdemir and M. Sarduvan, Notes on linear combinations of two tripotent, idempotent,
and involutive matrices that commute, An. Ştiint. Univ. “Ovidius" Constanta
Ser. Mat. 16, 83-90, 2008.
- [5] T. Petik, H. Özdemir and J. Benítez, On the spectra of some combinations of two
generalized quadratic matrices, Appl. Math. Comput. 268, 978-990, 2015.
- [6] T. Petik, M. Uç and H. Özdemir, Generalized quadraticity of linear combination of
two generalized quadratic matrices, Linear Multilinear Algebra 63 (12), 2430-2439,
2015.
- [7] M. Sarduvan and H. Özdemir, On linear combinations of two tripotent, idempotent,
and involutive matrices, Appl. Math. Comput. 200 (1), 401-406, 2008.
- [8] M. Sarduvan and N. Kalaycı, On idempotency of linear combinations of a quadratic
or a cubic matrix and an arbitrary matrix, Filomat 33 (10), 3161-3185, 2019.
- [9] M. Tošić, On some linear combinations of commuting involutive and idempotent matrices,
Appl. Math. Comput. 233, 103-108, 2014.
- [10] M. Uç, H. Özdemir and A.Y. Özban, On the quadraticity of linear combinations of
quadratic matrices, Linear Multilinear Algebra 63 (6), 1125-1137, 2015.
- [11] M. Uç, T. Petik and H. Özdemir, The generalized quadraticity of linear combinations
of two commuting quadratic matrices, Linear Multilinear Algebra 64 (9), 1696-1715,
2016.
- [12] Y. Wu, K–potent matrices–construction and applications in digital image encryption,
Recent Advances in Applied Mathematics, AMERICAN-MATH’10 Proceedings of
the 2010 American Conference on Applied Mathematics, USA, 455-460, 2010.
- [13] C. Xu, On idempotency, involution and nilpotency of a linear combination of two
matrices, Linear Multilinear Algebra 63 (8), 1664-1677, 2015.
- [14] C. Xu and R. Xu, Tripotency of a linear combination of two involutory matrices and
a tripotent matrix that mutually commute, Linear Algebra Appl. 437 (9), 2091-2109,
2012.