Research Article
BibTex RIS Cite
Year 2022, Volume: 51 Issue: 1, 8 - 19, 14.02.2022
https://doi.org/10.15672/hujms.882603

Abstract

References

  • [1] M.A. Akyol and Y. Gündüzalp, On the geometry of conformal anti-invariant $\xi^{\perp}$- submersions, Int. J. Maps Math. 1 (1), 50–67, 2018.
  • [2] M.A. Akyol and R. Sarı, On semi-slant $\xi^{\perp}$-Riemannian submersions, Mediterr. J. Math. 14, 234 (20 pp), 2017.
  • [3] M.A. Akyol and B. Şahin, Conformal slant submersions, Hacet. J. Math. Stat. 48 (1), 28–44, 2019.
  • [4] M.A. Akyol, R. Sarı and E. Aksoy, Semi-invariant $\xi^{\perp}$-Riemannian submersions from almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys. 14 (5), 1750074, 2017.
  • [5] L.S. Alqahtani, M.S. Stankovic and S. Uddin, Warped product bi-slant submanifolds of cosymplectic manifolds, Filomat, 31 (16), 5065–5071, 2017.
  • [6] S. Aykurt Sepet and M. Ergüt, Pointwise slant submersions from cosymplectic man- ifolds, Turkish J. Math. 40, 582–593, 2016.
  • [7] P. Baird and J.C. Wood, Harmonic morphisms between Riemannian manifolds, Lon- don Mathematical Society Monographs, Oxford University Press, Oxford, 2003.
  • [8] J.L. Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J. 42, 125–138, 2000.
  • [9] A. Carriazo, Bi-slant immersions, In Proceeding of the ICRAMS, Kharagpur, India, 88–97, 2000.
  • [10] B.Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.
  • [11] M. Falcitelly, S. Ianus and A.M. Pastore, Riemannian Submersions and Related Topics, World Scientific, River Edge, NJ, 2004.
  • [12] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, Journal of Mathematics and Mechanics, 16, 715–737, 1967.
  • [13] Y. Gündüzalp, Slant submersions from almost product Riemannian manifolds, Turk- ish J. Math. 37, 863–873, 2013.
  • [14] Y. Gündüzalp, Semi-slant submersions from almost product Riemannian manifolds, Demonstratio Math. 49 (3), 345–356, 2016.
  • [15] Y. Gündüzalp, Slant submersions in paracontact geometry, Hacet. J. Math. Stat. 49 (3), 822–834, 2020.
  • [16] İ. Küpeli Erken and C. Murathan, Slant Riemannian submersions from Sasakian manifolds, Arab. J. Math. Sci. 22, 250–264, 2016.
  • [17] J.W. Lee, Anti-invariant $\xi^{\perp}$-Riemannian submersions from almost contact manifolds. Hacet. J. Math. Stat. 42 (3), 231–241, 2013.
  • [18] J.W. Lee, Pointwise slant submersions, Bull. Korean Math. Soc. 51 (4), 1115–1126, 2014.
  • [19] B. O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13, 458– 469, 1966.
  • [20] F. Özdemir, C. Sayar and H.M. Taştan, Semi-invariant submersions whose total man- ifolds are locally product Riemannian, Quaest. Math. 40 (7), 909–926, 2017.
  • [21] K.S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (3), 951–962, 2013.
  • [22] R. Prasad, S.S. Shukla and S. Kumar, On Quasi-bi-slant submersions, Mediterr. J. Math. 16, 155 (18 pp), 2019.
  • [23] C. Sayar, M.A. Akyol and R. Prasad, Bi-slant submersions in complex geometry, Int. J. Geom. Methods Mod. Phys., 17 (4), 2050055, 2020.
  • [24] C. Sayar, H.M. Taştan, F. Özdemir and M.M. Tripathi, Generic submersions from Kaehler Manifolds, Bull. Malays. Math. Sci. Soc. 43, 809–831, 2020.
  • [25] B. Şahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (3), 437–447, 2010.
  • [26] B. Şahin, Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull. 56 (1), 173–183, 2011.
  • [27] B. Şahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 54 (102), 93–105, 2011.
  • [28] B. Şahin, Riemannian submersions, Riemannian maps in Hermitian geometry and their applications, Amsterdam, Netherlands: Elsevier Science Publishing Co., Inc., 2017.
  • [29] H.M. Taştan, On Lagrangian submersions, Hacet. J. Math. Stat. 43 (6), 993–1000, 2014.
  • [30] H.M. Taştan, B. Şahin and Ş. Yanan, Hemi-slant submersions, Mediterr. J. Math. 13, 2171–2184, 2016.
  • [31] S. Uddin, B.Y. Chen and F.R. Al-Solamy, Warped Product Bi-slant Immersions in Kaehler Manifolds, Mediterr. J. Math. 14, 95 (11 pages), 2017.
  • [32] B. Watson, Almost Hermitian submersions, J. Differential Geom. 11 (1), 147–165, 1976.

Bi-slant $\xi^{\perp}$-Riemannian submersions

Year 2022, Volume: 51 Issue: 1, 8 - 19, 14.02.2022
https://doi.org/10.15672/hujms.882603

Abstract

We introduce bi-slant $\xi^{\perp}$-Riemannian submersions from Sasakian manifolds onto Riemannian manifolds as a generalization of slant and semi-slant $\xi^{\perp}$-Riemannian submersion and present some examples. We give the necessary and sufficient conditions for the integration of the distributions used to define the bi-slant $\xi^{\perp}$-Riemannian submersions and examine the geometry of foliations. After we obtain necessary and sufficient conditions related to totally geodesicness of such submersion. Finally we give some decomposition theorems for total manifold.

References

  • [1] M.A. Akyol and Y. Gündüzalp, On the geometry of conformal anti-invariant $\xi^{\perp}$- submersions, Int. J. Maps Math. 1 (1), 50–67, 2018.
  • [2] M.A. Akyol and R. Sarı, On semi-slant $\xi^{\perp}$-Riemannian submersions, Mediterr. J. Math. 14, 234 (20 pp), 2017.
  • [3] M.A. Akyol and B. Şahin, Conformal slant submersions, Hacet. J. Math. Stat. 48 (1), 28–44, 2019.
  • [4] M.A. Akyol, R. Sarı and E. Aksoy, Semi-invariant $\xi^{\perp}$-Riemannian submersions from almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys. 14 (5), 1750074, 2017.
  • [5] L.S. Alqahtani, M.S. Stankovic and S. Uddin, Warped product bi-slant submanifolds of cosymplectic manifolds, Filomat, 31 (16), 5065–5071, 2017.
  • [6] S. Aykurt Sepet and M. Ergüt, Pointwise slant submersions from cosymplectic man- ifolds, Turkish J. Math. 40, 582–593, 2016.
  • [7] P. Baird and J.C. Wood, Harmonic morphisms between Riemannian manifolds, Lon- don Mathematical Society Monographs, Oxford University Press, Oxford, 2003.
  • [8] J.L. Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J. 42, 125–138, 2000.
  • [9] A. Carriazo, Bi-slant immersions, In Proceeding of the ICRAMS, Kharagpur, India, 88–97, 2000.
  • [10] B.Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.
  • [11] M. Falcitelly, S. Ianus and A.M. Pastore, Riemannian Submersions and Related Topics, World Scientific, River Edge, NJ, 2004.
  • [12] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, Journal of Mathematics and Mechanics, 16, 715–737, 1967.
  • [13] Y. Gündüzalp, Slant submersions from almost product Riemannian manifolds, Turk- ish J. Math. 37, 863–873, 2013.
  • [14] Y. Gündüzalp, Semi-slant submersions from almost product Riemannian manifolds, Demonstratio Math. 49 (3), 345–356, 2016.
  • [15] Y. Gündüzalp, Slant submersions in paracontact geometry, Hacet. J. Math. Stat. 49 (3), 822–834, 2020.
  • [16] İ. Küpeli Erken and C. Murathan, Slant Riemannian submersions from Sasakian manifolds, Arab. J. Math. Sci. 22, 250–264, 2016.
  • [17] J.W. Lee, Anti-invariant $\xi^{\perp}$-Riemannian submersions from almost contact manifolds. Hacet. J. Math. Stat. 42 (3), 231–241, 2013.
  • [18] J.W. Lee, Pointwise slant submersions, Bull. Korean Math. Soc. 51 (4), 1115–1126, 2014.
  • [19] B. O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13, 458– 469, 1966.
  • [20] F. Özdemir, C. Sayar and H.M. Taştan, Semi-invariant submersions whose total man- ifolds are locally product Riemannian, Quaest. Math. 40 (7), 909–926, 2017.
  • [21] K.S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (3), 951–962, 2013.
  • [22] R. Prasad, S.S. Shukla and S. Kumar, On Quasi-bi-slant submersions, Mediterr. J. Math. 16, 155 (18 pp), 2019.
  • [23] C. Sayar, M.A. Akyol and R. Prasad, Bi-slant submersions in complex geometry, Int. J. Geom. Methods Mod. Phys., 17 (4), 2050055, 2020.
  • [24] C. Sayar, H.M. Taştan, F. Özdemir and M.M. Tripathi, Generic submersions from Kaehler Manifolds, Bull. Malays. Math. Sci. Soc. 43, 809–831, 2020.
  • [25] B. Şahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (3), 437–447, 2010.
  • [26] B. Şahin, Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull. 56 (1), 173–183, 2011.
  • [27] B. Şahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 54 (102), 93–105, 2011.
  • [28] B. Şahin, Riemannian submersions, Riemannian maps in Hermitian geometry and their applications, Amsterdam, Netherlands: Elsevier Science Publishing Co., Inc., 2017.
  • [29] H.M. Taştan, On Lagrangian submersions, Hacet. J. Math. Stat. 43 (6), 993–1000, 2014.
  • [30] H.M. Taştan, B. Şahin and Ş. Yanan, Hemi-slant submersions, Mediterr. J. Math. 13, 2171–2184, 2016.
  • [31] S. Uddin, B.Y. Chen and F.R. Al-Solamy, Warped Product Bi-slant Immersions in Kaehler Manifolds, Mediterr. J. Math. 14, 95 (11 pages), 2017.
  • [32] B. Watson, Almost Hermitian submersions, J. Differential Geom. 11 (1), 147–165, 1976.
There are 32 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sezin Aykurt Sepet 0000-0003-1521-6798

Publication Date February 14, 2022
Published in Issue Year 2022 Volume: 51 Issue: 1

Cite

APA Aykurt Sepet, S. (2022). Bi-slant $\xi^{\perp}$-Riemannian submersions. Hacettepe Journal of Mathematics and Statistics, 51(1), 8-19. https://doi.org/10.15672/hujms.882603
AMA Aykurt Sepet S. Bi-slant $\xi^{\perp}$-Riemannian submersions. Hacettepe Journal of Mathematics and Statistics. February 2022;51(1):8-19. doi:10.15672/hujms.882603
Chicago Aykurt Sepet, Sezin. “Bi-Slant $\xi^{\perp}$-Riemannian Submersions”. Hacettepe Journal of Mathematics and Statistics 51, no. 1 (February 2022): 8-19. https://doi.org/10.15672/hujms.882603.
EndNote Aykurt Sepet S (February 1, 2022) Bi-slant $\xi^{\perp}$-Riemannian submersions. Hacettepe Journal of Mathematics and Statistics 51 1 8–19.
IEEE S. Aykurt Sepet, “Bi-slant $\xi^{\perp}$-Riemannian submersions”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 1, pp. 8–19, 2022, doi: 10.15672/hujms.882603.
ISNAD Aykurt Sepet, Sezin. “Bi-Slant $\xi^{\perp}$-Riemannian Submersions”. Hacettepe Journal of Mathematics and Statistics 51/1 (February 2022), 8-19. https://doi.org/10.15672/hujms.882603.
JAMA Aykurt Sepet S. Bi-slant $\xi^{\perp}$-Riemannian submersions. Hacettepe Journal of Mathematics and Statistics. 2022;51:8–19.
MLA Aykurt Sepet, Sezin. “Bi-Slant $\xi^{\perp}$-Riemannian Submersions”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 1, 2022, pp. 8-19, doi:10.15672/hujms.882603.
Vancouver Aykurt Sepet S. Bi-slant $\xi^{\perp}$-Riemannian submersions. Hacettepe Journal of Mathematics and Statistics. 2022;51(1):8-19.