Research Article
BibTex RIS Cite
Year 2022, Volume: 51 Issue: 2, 430 - 442, 01.04.2022
https://doi.org/10.15672/hujms.792212

Abstract

References

  • [1] I. Amin, Y. Ibrahim and M. Yousif, C3-modules, Algebra Colloq. 22 (4), 655-670, 2015.
  • [2] Sh. Asgari, T-continuous modules, Comm. Algebra, 45 (5), 1941-1952, 2017.
  • [3] Sh. Asgari, T-quasi-continuous modules, Comm. Algebra, 47 (5), 1939-1953, 2019.
  • [4] Sh. Asgari and A. Haghany, t-Extending modules and t-Baer modules, Comm. Alge- bra, 39 (5), 1605-1623, 2011.
  • [5] Sh. Asgari, A. Haghany and Y. Tolooei, T-semisimple modules and T-semisimple rings, Comm. Algebra, 41 (5), 1882-1902, 2013.
  • [6] V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective modules, J. Algebra, 420, 39-53, 2014.
  • [7] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006.
  • [8] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics series 313, Longman Scientific & Technical, Harlow, 1994.
  • [9] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970.
  • [10] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
  • [11] K.R. Goodearl, Ring Theory. Nonsigular Rings and Modules, Marcel Dekker, New York, 1976.
  • [12] D.K. Harrison, Infinite Abelian groups and homological methods, Ann. of Math. (2) 69 (2), 366-391, 1959.
  • [13] L. Jeremy, Sur les modules et anneaux quasi-continus, C. R. Acad. Sci. Paris (Série A) 273, 80-83, 1971.
  • [14] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72, 327-340, 1952.
  • [15] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
  • [16] F. Kourki, When maximal linearly independant subsets of a free module have the same cardinality?, in: Modules and Comodules, Trends in Mathematics, 281-293, Birkhäuser, Verlag, Basel, Switzerland, 2008.
  • [17] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999.
  • [18] G. Lee, S.T. Rizvi and C.S. Roman, Dual Rickart modules, Comm. Algebra, 39 (11), 4036-4058, 2011.
  • [19] G. Lee, C.S. Roman and X. Zhang, Modules whose endomorphism rings are division rings, Comm. Algebra, 42 (12), 5205-5223, 2014.
  • [20] S.H. Mohamed and T. Bouhy, Continuous modules, Arabian J. Sci. Eng. 2, 107-122, 1977.
  • [21] S.H. Mohamed and B.J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series 147, Cambridge University Press, Cambridge, 1990.
  • [22] W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings, Cambridge University Press, Cambridge, 2003.
  • [23] F.L. Sandomierski, Semisimple maximal quotient rings, Trans. Amer. Math. Soc. 128, 112-120, 1967.
  • [24] P.F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21 (6), 1809-1847, 1993.
  • [25] T. Takeuchi, On direct modules, Hokkaido Math. J. 1 (2), 168-177, 1972.
  • [26] A. Tuganbaev, Rings Close to Regular, Mathematics and Its Applications, vol. 545, Kluwer Academic Publishers, Dordrecht, 2002.
  • [27] Y. Utumi, On continuous regular rings, Canad. Math. Bull. 4 (1), 63-69, 1961.
  • [28] R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1), 233-256, 1971.
  • [29] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991.

On a generalization of $C_2$-modules

Year 2022, Volume: 51 Issue: 2, 430 - 442, 01.04.2022
https://doi.org/10.15672/hujms.792212

Abstract

A module $M$ is called a $C_{21}$-module if, whenever $A$ and $B$ are submodules of $M$ with $A \cong B$, $A$ is nonsingular and $B$ is a direct summand of $M$, then $A$ is a direct summand of $M$. Various examples of $C_{21}$-modules are presented. Some basic properties of these modules are investigated. It is shown that the class of rings $R$ over which every $C_{21}$-module is a $C_2$-module is exactly that of right SI-rings. Also, we prove that for a ring $R$, every $R$-module has $(C_{21})$ if and only if $R$ is a right t-semisimple ring.

References

  • [1] I. Amin, Y. Ibrahim and M. Yousif, C3-modules, Algebra Colloq. 22 (4), 655-670, 2015.
  • [2] Sh. Asgari, T-continuous modules, Comm. Algebra, 45 (5), 1941-1952, 2017.
  • [3] Sh. Asgari, T-quasi-continuous modules, Comm. Algebra, 47 (5), 1939-1953, 2019.
  • [4] Sh. Asgari and A. Haghany, t-Extending modules and t-Baer modules, Comm. Alge- bra, 39 (5), 1605-1623, 2011.
  • [5] Sh. Asgari, A. Haghany and Y. Tolooei, T-semisimple modules and T-semisimple rings, Comm. Algebra, 41 (5), 1882-1902, 2013.
  • [6] V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective modules, J. Algebra, 420, 39-53, 2014.
  • [7] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006.
  • [8] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics series 313, Longman Scientific & Technical, Harlow, 1994.
  • [9] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970.
  • [10] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
  • [11] K.R. Goodearl, Ring Theory. Nonsigular Rings and Modules, Marcel Dekker, New York, 1976.
  • [12] D.K. Harrison, Infinite Abelian groups and homological methods, Ann. of Math. (2) 69 (2), 366-391, 1959.
  • [13] L. Jeremy, Sur les modules et anneaux quasi-continus, C. R. Acad. Sci. Paris (Série A) 273, 80-83, 1971.
  • [14] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72, 327-340, 1952.
  • [15] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
  • [16] F. Kourki, When maximal linearly independant subsets of a free module have the same cardinality?, in: Modules and Comodules, Trends in Mathematics, 281-293, Birkhäuser, Verlag, Basel, Switzerland, 2008.
  • [17] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999.
  • [18] G. Lee, S.T. Rizvi and C.S. Roman, Dual Rickart modules, Comm. Algebra, 39 (11), 4036-4058, 2011.
  • [19] G. Lee, C.S. Roman and X. Zhang, Modules whose endomorphism rings are division rings, Comm. Algebra, 42 (12), 5205-5223, 2014.
  • [20] S.H. Mohamed and T. Bouhy, Continuous modules, Arabian J. Sci. Eng. 2, 107-122, 1977.
  • [21] S.H. Mohamed and B.J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series 147, Cambridge University Press, Cambridge, 1990.
  • [22] W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings, Cambridge University Press, Cambridge, 2003.
  • [23] F.L. Sandomierski, Semisimple maximal quotient rings, Trans. Amer. Math. Soc. 128, 112-120, 1967.
  • [24] P.F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21 (6), 1809-1847, 1993.
  • [25] T. Takeuchi, On direct modules, Hokkaido Math. J. 1 (2), 168-177, 1972.
  • [26] A. Tuganbaev, Rings Close to Regular, Mathematics and Its Applications, vol. 545, Kluwer Academic Publishers, Dordrecht, 2002.
  • [27] Y. Utumi, On continuous regular rings, Canad. Math. Bull. 4 (1), 63-69, 1961.
  • [28] R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1), 233-256, 1971.
  • [29] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991.
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Abdoul Djibril Diallo This is me 0000-0002-1791-0639

Papa Cheikhou Dıop 0000-0003-0628-0018

Rachid Tribak 0000-0001-8400-4321

Publication Date April 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 2

Cite

APA Diallo, A. D., Dıop, P. C., & Tribak, R. (2022). On a generalization of $C_2$-modules. Hacettepe Journal of Mathematics and Statistics, 51(2), 430-442. https://doi.org/10.15672/hujms.792212
AMA Diallo AD, Dıop PC, Tribak R. On a generalization of $C_2$-modules. Hacettepe Journal of Mathematics and Statistics. April 2022;51(2):430-442. doi:10.15672/hujms.792212
Chicago Diallo, Abdoul Djibril, Papa Cheikhou Dıop, and Rachid Tribak. “On a Generalization of $C_2$-Modules”. Hacettepe Journal of Mathematics and Statistics 51, no. 2 (April 2022): 430-42. https://doi.org/10.15672/hujms.792212.
EndNote Diallo AD, Dıop PC, Tribak R (April 1, 2022) On a generalization of $C_2$-modules. Hacettepe Journal of Mathematics and Statistics 51 2 430–442.
IEEE A. D. Diallo, P. C. Dıop, and R. Tribak, “On a generalization of $C_2$-modules”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 2, pp. 430–442, 2022, doi: 10.15672/hujms.792212.
ISNAD Diallo, Abdoul Djibril et al. “On a Generalization of $C_2$-Modules”. Hacettepe Journal of Mathematics and Statistics 51/2 (April 2022), 430-442. https://doi.org/10.15672/hujms.792212.
JAMA Diallo AD, Dıop PC, Tribak R. On a generalization of $C_2$-modules. Hacettepe Journal of Mathematics and Statistics. 2022;51:430–442.
MLA Diallo, Abdoul Djibril et al. “On a Generalization of $C_2$-Modules”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 2, 2022, pp. 430-42, doi:10.15672/hujms.792212.
Vancouver Diallo AD, Dıop PC, Tribak R. On a generalization of $C_2$-modules. Hacettepe Journal of Mathematics and Statistics. 2022;51(2):430-42.