Research Article
BibTex RIS Cite
Year 2022, Volume: 51 Issue: 3, 787 - 799, 01.06.2022
https://doi.org/10.15672/hujms.950075

Abstract

References

  • [1] A. Abubakar and O.A. Taiwo, Integral collocation approximation methods for the numerical solution of high-orders linear Fredholm-Volterra integro-differential equations, American Journal of Computational and Applied Mathematics, 4(4), 111-117, 2014.
  • [2] N.I. Acar and A. Daşcıoğlu, A projection method for linear Fredholm-Volterra integro differential equations, J. Taibah Univ. Sci. 13 (1), 644-650, 2019.
  • [3] G.M. Amiraliyev, M.E. Durmaz and M. Kudu, Uniform convergence results for singularly perturbed Fredholm integro-differential equation, J. Math. Anal. 9 (6), 55-64, 2018.
  • [4] G.M. Amiraliyev and Y.D. Mamedov, Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations, Turk. J. Math. 19, 207-222, 1995.
  • [5] G.M. Amiraliyev, Ö. Yapman and M. Kudu, A fitted approximate method for a Volterra delay-integro-differential equation with initial layer, Hacet. J. Math. Stat. 48 (5), 1417-1429, 2019.
  • [6] M.M. Arjunan and S. Selvi, Existence results for impulsive mixed Volterra-Fredholm integro-differential inclusions with nonlocal conditions, Int. J. Math. Sci. Appl. 1 (2), 101-119, 2015.
  • [7] J. Chen, M. He and Y. Huang, A fast multiscale Galerkin method for solving second- order linear Fredholm integro-differential equation with Dirichlet boundary conditions, J. Comput. Appl. Math. 364 (1), Article ID 112352, 2020.
  • [8] M. Çakır, B. Güneş and H. Duru, A novel computational method for solving nonlinear Volterra integro-differential equation, Kuwait J. Sci. 48 (1), 31-40, 2021.
  • [9] E. Çimen and M. Çakır, A uniform numerical method for solving singularly perturbed Fredholm integro-differential problem, Comput. Appl. Math. 40, Article number 42, 2021.
  • [10] E.H. Doha, M.A. Abdelkawy, A.Z.M. Amin and D. Baleanu, Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations, Nonlinear Anal. Model. Control 24 (3), 332-352, 2019.
  • [11] M.E. Durmaz and G.M. Amiraliyev, A robust numerical method for a singularly perturbed Fredholm integro-differential equation, Mediterr. J. Math. 18, Article number 24, 2021.
  • [12] S.M. El- Sayed, D. Kaya and S. Zarea, The decomposition method applied to solve high-order linear Volterra-Fredholm integro-differential equations, Int. J. Nonlinear Sci. Numer. Simul. 5 (2), 105-112, 2004.
  • [13] A.I. Fairbairn and M.A. Kelmanson, Error analysis of a spectrally accurate Volterra- transformation method for solving 1-D Fredholm integro-differential equations, Int. J. Mech. Sci. textbf144, 382-391, 2018.
  • [14] M. Fathy, M. El-Gamel and M.S. El-Azab, Legendre-Galerkin method for the linear Fredholm integro-differential equations, Appl. Math. Comput. 243, 789-800, 2014.
  • [15] M. Ghasemi, M. Fardi and R.K. Ghaziani, Solution of system of the mixed Volterra- Fredholm integral equations by an analytical method, Math. Comput. Model. 58, 1522- 1530, 2013.
  • [16] M. Gülsu, Y. Öztürk and M. Sezer, A new collocation method for solution of mixed linear integro-differential-difference equations, Appl. Math. Comput. 216, 2183-2198, 2010.
  • [17] A.A. Hamoud and K.P. Ghadle, The reliable modified of Adomian Decomposition method for solving integro-differential equations, J. Chungcheong Math. Soc. 32 (4), 409-420, 2019.
  • [18] A.A. Hamoud, K.H. Hussain, N.M. Mohammed and K.P. Ghadle, Solving Fredholm integro-differential equations by using numerical techniques, Nonlinear Funct. Anal. Appl. 24 (3), 533-542, 2019.
  • [19] A.A. Hamoud, N.M. Mohammed and K.P. Ghadle, Solving mixed Volterra-Fredholm integro differential equations by using HAM, Turk. J. Math. Comput. Sci. 12 (1), 18-25, 2020.
  • [20] E. Hesameddini and M. Shahbazi, Solving multipoint problems with linear Volterra- Fredholm integro-differential equations of the neutral type using Bernstein polynomials method, Appl. Numer. Math. 136, 122-138, 2019.
  • [21] M. Heydari, Z. Avazzadeh and G.B. Loghmani, Chebyshev cardinal functions for solving Volterra-Fredholm integro-differential equations using operational matrices, Iran. J. Sci. Technol. Trans. A Sci. 36 (1), 13-24, 2012.
  • [22] B.C. Iragi and J.B. Munyazaki, A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math. 97 (4), 759-771, 2020.
  • [23] K. Issa and F. Salehi, Approximate solution of perturbed Volterra-Fredholm integro- differential equations by Chebyshev-Galerkin method, J. Math. 2017 Article ID 8213932, 2017.
  • [24] A.A. Jalal, N.A. Sleman and A.I. Amen, Numerical methods for solving the system of Volterra-Fredholm integro-differential equations, ZANCO J. Pure Appl. Sci. 31 (2), 25-30, 2019.
  • [25] K.D. Kucche and M.B. Dhakne, On existence results and qualitative properties of mild solution of semilinear mixed Volterra-Fredholm functional integro-differential equations in Banach spaces, Appl. Math. Comput. 219, 10806-10816, 2013.
  • [26] M. Kudu, I. Amirali and G.M. Amiraliyev, A finite difference method for a singularly perturbed delay integro-differential equations, J. Comput. Appl. Math. textbf308, 379- 390, 2016.
  • [27] K. Kumar and R. Kumar, Existence of solutions of quasilinear mixed Volterra- Fredholm integro differential equations with nonlocal conditions, Journal Differential Equations and Control Processes, 3, 77-84, 2013.
  • [28] A.H. Mahmood and L.H. Sadoon, Existence of a solution of certain Volterra-Fredholm integro-differential equations, J. Educ. Sci.25(3), 62-67, 2012.
  • [29] D.A. Maturi and E.A. Simbawa, The modified Decomposition method for solving Volterra-Fredholm integro-differential equations using Maple, Int. J. GEOMATE 18 (67), 84-89, 2020.
  • [30] N.A. Mbroh, S.C.O. Noutchie and R.Y.M. Massoukou, A second order finite difference scheme for singularly perturbed Volterra integro-differential equation. Alex. Eng. J. 59, 2441-2447, 2020.
  • [31] A.K.O. Mezaal, Efficient approximate method for solutions of linear mixed Volterra- Fredholm integro differential equations, Al-Mustansiriyah J. Sci. 27 (1), 58-61, 2016.
  • [32] E.H. Ouda, S. Shibab and M. Rasheed, Boubaker wavelets functions for solving higher order integro-differential equations, J. Southwest Jiaotong Univ. 55 (2), 2020.
  • [33] A. Panda, J. Mohapatra and I. Amirali, A second-order post-processing technique for singularly perturbed Volterra integro-differential equations, Mediterr. J. Math. 18, Article Number 231, 2021.
  • [34] B. Raftari, Numerical solutions of the linear Volterra integro-differential equations: Homotopy perturbation method and finite difference method, World Appl. Sci. J. 9, 7-12, 2010.
  • [35] M.A. Ramadan and M.R. Ali, Numerical solution of Volterra-Fredholm integral equations using Hybrid orthonormal Bernstein and Block-Pulse functions, Asian Res. J. Math. 4 (4), 1-14, 2017.
  • [36] S. Shahmorad, Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation, Appl. Math. Comput. 167, 1418-1429, 2005.
  • [37] A. Tari, M.Y. Rahimi, S. Shahmorad and F. Talati, Development of the Tau method for the numerical solution of two-dimensional linear Volterra integro-differential equations, Comput. Methods Appl. Math. 9 (4), 421-435, 2009.
  • [38] K. Wang and Q. Wang, Lagrange collocation method for solving Volterra-Fredholm integral equations, Appl. Math. Comput. 219 (21), 10434-10440, 2013.
  • [39] S. Yalçınbaş, M. Sezer and H.H. Sorkun, Legendre polynomial solutions of high-order linear Fredholm integro-differential equations, Appl. Math. Comput. 210, 334-349, 2009.
  • [40] Ö. Yapman and G.M. Amiraliyev, A novel second order fitted computational method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math. 97 (6), 1293-1302, 2020.
  • [41] A. Zanib and J. Ahmad, Variational iteration method for mixed type integro- differential equations, Math. Theory Model. (IISTE), 6 (8), 1-7, 2016.

A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh

Year 2022, Volume: 51 Issue: 3, 787 - 799, 01.06.2022
https://doi.org/10.15672/hujms.950075

Abstract

In this research, the finite difference method is used to solve the initial value problem of linear first order Volterra-Fredholm integro-differential equations with singularity. By using implicit difference rules and composite numerical quadrature rules, the difference scheme is established on a Shishkin mesh. The stability and convergence of the proposed scheme are analyzed and two examples are solved to display the advantages of the presented technique.

References

  • [1] A. Abubakar and O.A. Taiwo, Integral collocation approximation methods for the numerical solution of high-orders linear Fredholm-Volterra integro-differential equations, American Journal of Computational and Applied Mathematics, 4(4), 111-117, 2014.
  • [2] N.I. Acar and A. Daşcıoğlu, A projection method for linear Fredholm-Volterra integro differential equations, J. Taibah Univ. Sci. 13 (1), 644-650, 2019.
  • [3] G.M. Amiraliyev, M.E. Durmaz and M. Kudu, Uniform convergence results for singularly perturbed Fredholm integro-differential equation, J. Math. Anal. 9 (6), 55-64, 2018.
  • [4] G.M. Amiraliyev and Y.D. Mamedov, Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations, Turk. J. Math. 19, 207-222, 1995.
  • [5] G.M. Amiraliyev, Ö. Yapman and M. Kudu, A fitted approximate method for a Volterra delay-integro-differential equation with initial layer, Hacet. J. Math. Stat. 48 (5), 1417-1429, 2019.
  • [6] M.M. Arjunan and S. Selvi, Existence results for impulsive mixed Volterra-Fredholm integro-differential inclusions with nonlocal conditions, Int. J. Math. Sci. Appl. 1 (2), 101-119, 2015.
  • [7] J. Chen, M. He and Y. Huang, A fast multiscale Galerkin method for solving second- order linear Fredholm integro-differential equation with Dirichlet boundary conditions, J. Comput. Appl. Math. 364 (1), Article ID 112352, 2020.
  • [8] M. Çakır, B. Güneş and H. Duru, A novel computational method for solving nonlinear Volterra integro-differential equation, Kuwait J. Sci. 48 (1), 31-40, 2021.
  • [9] E. Çimen and M. Çakır, A uniform numerical method for solving singularly perturbed Fredholm integro-differential problem, Comput. Appl. Math. 40, Article number 42, 2021.
  • [10] E.H. Doha, M.A. Abdelkawy, A.Z.M. Amin and D. Baleanu, Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations, Nonlinear Anal. Model. Control 24 (3), 332-352, 2019.
  • [11] M.E. Durmaz and G.M. Amiraliyev, A robust numerical method for a singularly perturbed Fredholm integro-differential equation, Mediterr. J. Math. 18, Article number 24, 2021.
  • [12] S.M. El- Sayed, D. Kaya and S. Zarea, The decomposition method applied to solve high-order linear Volterra-Fredholm integro-differential equations, Int. J. Nonlinear Sci. Numer. Simul. 5 (2), 105-112, 2004.
  • [13] A.I. Fairbairn and M.A. Kelmanson, Error analysis of a spectrally accurate Volterra- transformation method for solving 1-D Fredholm integro-differential equations, Int. J. Mech. Sci. textbf144, 382-391, 2018.
  • [14] M. Fathy, M. El-Gamel and M.S. El-Azab, Legendre-Galerkin method for the linear Fredholm integro-differential equations, Appl. Math. Comput. 243, 789-800, 2014.
  • [15] M. Ghasemi, M. Fardi and R.K. Ghaziani, Solution of system of the mixed Volterra- Fredholm integral equations by an analytical method, Math. Comput. Model. 58, 1522- 1530, 2013.
  • [16] M. Gülsu, Y. Öztürk and M. Sezer, A new collocation method for solution of mixed linear integro-differential-difference equations, Appl. Math. Comput. 216, 2183-2198, 2010.
  • [17] A.A. Hamoud and K.P. Ghadle, The reliable modified of Adomian Decomposition method for solving integro-differential equations, J. Chungcheong Math. Soc. 32 (4), 409-420, 2019.
  • [18] A.A. Hamoud, K.H. Hussain, N.M. Mohammed and K.P. Ghadle, Solving Fredholm integro-differential equations by using numerical techniques, Nonlinear Funct. Anal. Appl. 24 (3), 533-542, 2019.
  • [19] A.A. Hamoud, N.M. Mohammed and K.P. Ghadle, Solving mixed Volterra-Fredholm integro differential equations by using HAM, Turk. J. Math. Comput. Sci. 12 (1), 18-25, 2020.
  • [20] E. Hesameddini and M. Shahbazi, Solving multipoint problems with linear Volterra- Fredholm integro-differential equations of the neutral type using Bernstein polynomials method, Appl. Numer. Math. 136, 122-138, 2019.
  • [21] M. Heydari, Z. Avazzadeh and G.B. Loghmani, Chebyshev cardinal functions for solving Volterra-Fredholm integro-differential equations using operational matrices, Iran. J. Sci. Technol. Trans. A Sci. 36 (1), 13-24, 2012.
  • [22] B.C. Iragi and J.B. Munyazaki, A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math. 97 (4), 759-771, 2020.
  • [23] K. Issa and F. Salehi, Approximate solution of perturbed Volterra-Fredholm integro- differential equations by Chebyshev-Galerkin method, J. Math. 2017 Article ID 8213932, 2017.
  • [24] A.A. Jalal, N.A. Sleman and A.I. Amen, Numerical methods for solving the system of Volterra-Fredholm integro-differential equations, ZANCO J. Pure Appl. Sci. 31 (2), 25-30, 2019.
  • [25] K.D. Kucche and M.B. Dhakne, On existence results and qualitative properties of mild solution of semilinear mixed Volterra-Fredholm functional integro-differential equations in Banach spaces, Appl. Math. Comput. 219, 10806-10816, 2013.
  • [26] M. Kudu, I. Amirali and G.M. Amiraliyev, A finite difference method for a singularly perturbed delay integro-differential equations, J. Comput. Appl. Math. textbf308, 379- 390, 2016.
  • [27] K. Kumar and R. Kumar, Existence of solutions of quasilinear mixed Volterra- Fredholm integro differential equations with nonlocal conditions, Journal Differential Equations and Control Processes, 3, 77-84, 2013.
  • [28] A.H. Mahmood and L.H. Sadoon, Existence of a solution of certain Volterra-Fredholm integro-differential equations, J. Educ. Sci.25(3), 62-67, 2012.
  • [29] D.A. Maturi and E.A. Simbawa, The modified Decomposition method for solving Volterra-Fredholm integro-differential equations using Maple, Int. J. GEOMATE 18 (67), 84-89, 2020.
  • [30] N.A. Mbroh, S.C.O. Noutchie and R.Y.M. Massoukou, A second order finite difference scheme for singularly perturbed Volterra integro-differential equation. Alex. Eng. J. 59, 2441-2447, 2020.
  • [31] A.K.O. Mezaal, Efficient approximate method for solutions of linear mixed Volterra- Fredholm integro differential equations, Al-Mustansiriyah J. Sci. 27 (1), 58-61, 2016.
  • [32] E.H. Ouda, S. Shibab and M. Rasheed, Boubaker wavelets functions for solving higher order integro-differential equations, J. Southwest Jiaotong Univ. 55 (2), 2020.
  • [33] A. Panda, J. Mohapatra and I. Amirali, A second-order post-processing technique for singularly perturbed Volterra integro-differential equations, Mediterr. J. Math. 18, Article Number 231, 2021.
  • [34] B. Raftari, Numerical solutions of the linear Volterra integro-differential equations: Homotopy perturbation method and finite difference method, World Appl. Sci. J. 9, 7-12, 2010.
  • [35] M.A. Ramadan and M.R. Ali, Numerical solution of Volterra-Fredholm integral equations using Hybrid orthonormal Bernstein and Block-Pulse functions, Asian Res. J. Math. 4 (4), 1-14, 2017.
  • [36] S. Shahmorad, Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation, Appl. Math. Comput. 167, 1418-1429, 2005.
  • [37] A. Tari, M.Y. Rahimi, S. Shahmorad and F. Talati, Development of the Tau method for the numerical solution of two-dimensional linear Volterra integro-differential equations, Comput. Methods Appl. Math. 9 (4), 421-435, 2009.
  • [38] K. Wang and Q. Wang, Lagrange collocation method for solving Volterra-Fredholm integral equations, Appl. Math. Comput. 219 (21), 10434-10440, 2013.
  • [39] S. Yalçınbaş, M. Sezer and H.H. Sorkun, Legendre polynomial solutions of high-order linear Fredholm integro-differential equations, Appl. Math. Comput. 210, 334-349, 2009.
  • [40] Ö. Yapman and G.M. Amiraliyev, A novel second order fitted computational method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math. 97 (6), 1293-1302, 2020.
  • [41] A. Zanib and J. Ahmad, Variational iteration method for mixed type integro- differential equations, Math. Theory Model. (IISTE), 6 (8), 1-7, 2016.
There are 41 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Musa Çakır 0000-0002-1979-570X

Baransel Güneş 0000-0002-3265-8881

Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 3

Cite

APA Çakır, M., & Güneş, B. (2022). A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh. Hacettepe Journal of Mathematics and Statistics, 51(3), 787-799. https://doi.org/10.15672/hujms.950075
AMA Çakır M, Güneş B. A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh. Hacettepe Journal of Mathematics and Statistics. June 2022;51(3):787-799. doi:10.15672/hujms.950075
Chicago Çakır, Musa, and Baransel Güneş. “A New Difference Method for the Singularly Perturbed Volterra-Fredholm Integro-Differential Equations on a Shishkin Mesh”. Hacettepe Journal of Mathematics and Statistics 51, no. 3 (June 2022): 787-99. https://doi.org/10.15672/hujms.950075.
EndNote Çakır M, Güneş B (June 1, 2022) A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh. Hacettepe Journal of Mathematics and Statistics 51 3 787–799.
IEEE M. Çakır and B. Güneş, “A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, pp. 787–799, 2022, doi: 10.15672/hujms.950075.
ISNAD Çakır, Musa - Güneş, Baransel. “A New Difference Method for the Singularly Perturbed Volterra-Fredholm Integro-Differential Equations on a Shishkin Mesh”. Hacettepe Journal of Mathematics and Statistics 51/3 (June 2022), 787-799. https://doi.org/10.15672/hujms.950075.
JAMA Çakır M, Güneş B. A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh. Hacettepe Journal of Mathematics and Statistics. 2022;51:787–799.
MLA Çakır, Musa and Baransel Güneş. “A New Difference Method for the Singularly Perturbed Volterra-Fredholm Integro-Differential Equations on a Shishkin Mesh”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, 2022, pp. 787-99, doi:10.15672/hujms.950075.
Vancouver Çakır M, Güneş B. A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh. Hacettepe Journal of Mathematics and Statistics. 2022;51(3):787-99.

Cited By