Year 2022,
Volume: 51 Issue: 3, 787 - 799, 01.06.2022
Musa Çakır
,
Baransel Güneş
References
- [1] A. Abubakar and O.A. Taiwo, Integral collocation approximation methods for the numerical solution of high-orders linear Fredholm-Volterra integro-differential equations,
American Journal of Computational and Applied Mathematics, 4(4), 111-117, 2014.
- [2] N.I. Acar and A. Daşcıoğlu, A projection method for linear Fredholm-Volterra integro
differential equations, J. Taibah Univ. Sci. 13 (1), 644-650, 2019.
- [3] G.M. Amiraliyev, M.E. Durmaz and M. Kudu, Uniform convergence results for singularly perturbed Fredholm integro-differential equation, J. Math. Anal. 9 (6), 55-64,
2018.
- [4] G.M. Amiraliyev and Y.D. Mamedov, Difference schemes on the uniform mesh for
singularly perturbed pseudo-parabolic equations, Turk. J. Math. 19, 207-222, 1995.
- [5] G.M. Amiraliyev, Ö. Yapman and M. Kudu, A fitted approximate method for a
Volterra delay-integro-differential equation with initial layer, Hacet. J. Math. Stat.
48 (5), 1417-1429, 2019.
- [6] M.M. Arjunan and S. Selvi, Existence results for impulsive mixed Volterra-Fredholm
integro-differential inclusions with nonlocal conditions, Int. J. Math. Sci. Appl. 1 (2),
101-119, 2015.
- [7] J. Chen, M. He and Y. Huang, A fast multiscale Galerkin method for solving second-
order linear Fredholm integro-differential equation with Dirichlet boundary conditions,
J. Comput. Appl. Math. 364 (1), Article ID 112352, 2020.
- [8] M. Çakır, B. Güneş and H. Duru, A novel computational method for solving nonlinear
Volterra integro-differential equation, Kuwait J. Sci. 48 (1), 31-40, 2021.
- [9] E. Çimen and M. Çakır, A uniform numerical method for solving singularly perturbed
Fredholm integro-differential problem, Comput. Appl. Math. 40, Article number 42,
2021.
- [10] E.H. Doha, M.A. Abdelkawy, A.Z.M. Amin and D. Baleanu, Shifted Jacobi spectral
collocation method with convergence analysis for solving integro-differential equations
and system of integro-differential equations, Nonlinear Anal. Model. Control 24 (3),
332-352, 2019.
- [11] M.E. Durmaz and G.M. Amiraliyev, A robust numerical method for a singularly perturbed Fredholm integro-differential equation, Mediterr. J. Math. 18, Article number
24, 2021.
- [12] S.M. El- Sayed, D. Kaya and S. Zarea, The decomposition method applied to solve
high-order linear Volterra-Fredholm integro-differential equations, Int. J. Nonlinear
Sci. Numer. Simul. 5 (2), 105-112, 2004.
- [13] A.I. Fairbairn and M.A. Kelmanson, Error analysis of a spectrally accurate Volterra-
transformation method for solving 1-D Fredholm integro-differential equations, Int. J.
Mech. Sci. textbf144, 382-391, 2018.
- [14] M. Fathy, M. El-Gamel and M.S. El-Azab, Legendre-Galerkin method for the linear
Fredholm integro-differential equations, Appl. Math. Comput. 243, 789-800, 2014.
- [15] M. Ghasemi, M. Fardi and R.K. Ghaziani, Solution of system of the mixed Volterra-
Fredholm integral equations by an analytical method, Math. Comput. Model. 58, 1522-
1530, 2013.
- [16] M. Gülsu, Y. Öztürk and M. Sezer, A new collocation method for solution of mixed
linear integro-differential-difference equations, Appl. Math. Comput. 216, 2183-2198,
2010.
- [17] A.A. Hamoud and K.P. Ghadle, The reliable modified of Adomian Decomposition
method for solving integro-differential equations, J. Chungcheong Math. Soc. 32 (4),
409-420, 2019.
- [18] A.A. Hamoud, K.H. Hussain, N.M. Mohammed and K.P. Ghadle, Solving Fredholm
integro-differential equations by using numerical techniques, Nonlinear Funct. Anal.
Appl. 24 (3), 533-542, 2019.
- [19] A.A. Hamoud, N.M. Mohammed and K.P. Ghadle, Solving mixed Volterra-Fredholm
integro differential equations by using HAM, Turk. J. Math. Comput. Sci. 12 (1),
18-25, 2020.
- [20] E. Hesameddini and M. Shahbazi, Solving multipoint problems with linear Volterra-
Fredholm integro-differential equations of the neutral type using Bernstein polynomials
method, Appl. Numer. Math. 136, 122-138, 2019.
- [21] M. Heydari, Z. Avazzadeh and G.B. Loghmani, Chebyshev cardinal functions for solving Volterra-Fredholm integro-differential equations using operational matrices, Iran. J. Sci. Technol. Trans. A Sci. 36 (1), 13-24, 2012.
- [22] B.C. Iragi and J.B. Munyazaki, A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math. 97 (4),
759-771, 2020.
- [23] K. Issa and F. Salehi, Approximate solution of perturbed Volterra-Fredholm integro-
differential equations by Chebyshev-Galerkin method, J. Math. 2017 Article ID
8213932, 2017.
- [24] A.A. Jalal, N.A. Sleman and A.I. Amen, Numerical methods for solving the system of
Volterra-Fredholm integro-differential equations, ZANCO J. Pure Appl. Sci. 31 (2),
25-30, 2019.
- [25] K.D. Kucche and M.B. Dhakne, On existence results and qualitative properties of mild
solution of semilinear mixed Volterra-Fredholm functional integro-differential equations in Banach spaces, Appl. Math. Comput. 219, 10806-10816, 2013.
- [26] M. Kudu, I. Amirali and G.M. Amiraliyev, A finite difference method for a singularly
perturbed delay integro-differential equations, J. Comput. Appl. Math. textbf308, 379-
390, 2016.
- [27] K. Kumar and R. Kumar, Existence of solutions of quasilinear mixed Volterra-
Fredholm integro differential equations with nonlocal conditions, Journal Differential
Equations and Control Processes, 3, 77-84, 2013.
- [28] A.H. Mahmood and L.H. Sadoon, Existence of a solution of certain Volterra-Fredholm
integro-differential equations, J. Educ. Sci.25(3), 62-67, 2012.
- [29] D.A. Maturi and E.A. Simbawa, The modified Decomposition method for solving
Volterra-Fredholm integro-differential equations using Maple, Int. J. GEOMATE 18
(67), 84-89, 2020.
- [30] N.A. Mbroh, S.C.O. Noutchie and R.Y.M. Massoukou, A second order finite difference
scheme for singularly perturbed Volterra integro-differential equation. Alex. Eng. J. 59,
2441-2447, 2020.
- [31] A.K.O. Mezaal, Efficient approximate method for solutions of linear mixed Volterra-
Fredholm integro differential equations, Al-Mustansiriyah J. Sci. 27 (1), 58-61, 2016.
- [32] E.H. Ouda, S. Shibab and M. Rasheed, Boubaker wavelets functions for solving
higher order integro-differential equations, J. Southwest Jiaotong Univ. 55 (2), 2020.
- [33] A. Panda, J. Mohapatra and I. Amirali, A second-order post-processing technique
for singularly perturbed Volterra integro-differential equations, Mediterr. J. Math. 18,
Article Number 231, 2021.
- [34] B. Raftari, Numerical solutions of the linear Volterra integro-differential equations:
Homotopy perturbation method and finite difference method, World Appl. Sci. J. 9,
7-12, 2010.
- [35] M.A. Ramadan and M.R. Ali, Numerical solution of Volterra-Fredholm integral equations using Hybrid orthonormal Bernstein and Block-Pulse functions, Asian Res. J.
Math. 4 (4), 1-14, 2017.
- [36] S. Shahmorad, Numerical solution of the general form linear Fredholm-Volterra
integro-differential equations by the Tau method with an error estimation, Appl.
Math. Comput. 167, 1418-1429, 2005.
- [37] A. Tari, M.Y. Rahimi, S. Shahmorad and F. Talati, Development of the Tau method
for the numerical solution of two-dimensional linear Volterra integro-differential equations, Comput. Methods Appl. Math. 9 (4), 421-435, 2009.
- [38] K. Wang and Q. Wang, Lagrange collocation method for solving Volterra-Fredholm
integral equations, Appl. Math. Comput. 219 (21), 10434-10440, 2013.
- [39] S. Yalçınbaş, M. Sezer and H.H. Sorkun, Legendre polynomial solutions of high-order
linear Fredholm integro-differential equations, Appl. Math. Comput. 210, 334-349,
2009.
- [40] Ö. Yapman and G.M. Amiraliyev, A novel second order fitted computational method
for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math.
97 (6), 1293-1302, 2020.
- [41] A. Zanib and J. Ahmad, Variational iteration method for mixed type integro-
differential equations, Math. Theory Model. (IISTE), 6 (8), 1-7, 2016.
A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh
Year 2022,
Volume: 51 Issue: 3, 787 - 799, 01.06.2022
Musa Çakır
,
Baransel Güneş
Abstract
In this research, the finite difference method is used to solve the initial value problem of linear first order Volterra-Fredholm integro-differential equations with singularity. By using implicit difference rules and composite numerical quadrature rules, the difference scheme is established on a Shishkin mesh. The stability and convergence of the proposed scheme are analyzed and two examples are solved to display the advantages of the presented technique.
References
- [1] A. Abubakar and O.A. Taiwo, Integral collocation approximation methods for the numerical solution of high-orders linear Fredholm-Volterra integro-differential equations,
American Journal of Computational and Applied Mathematics, 4(4), 111-117, 2014.
- [2] N.I. Acar and A. Daşcıoğlu, A projection method for linear Fredholm-Volterra integro
differential equations, J. Taibah Univ. Sci. 13 (1), 644-650, 2019.
- [3] G.M. Amiraliyev, M.E. Durmaz and M. Kudu, Uniform convergence results for singularly perturbed Fredholm integro-differential equation, J. Math. Anal. 9 (6), 55-64,
2018.
- [4] G.M. Amiraliyev and Y.D. Mamedov, Difference schemes on the uniform mesh for
singularly perturbed pseudo-parabolic equations, Turk. J. Math. 19, 207-222, 1995.
- [5] G.M. Amiraliyev, Ö. Yapman and M. Kudu, A fitted approximate method for a
Volterra delay-integro-differential equation with initial layer, Hacet. J. Math. Stat.
48 (5), 1417-1429, 2019.
- [6] M.M. Arjunan and S. Selvi, Existence results for impulsive mixed Volterra-Fredholm
integro-differential inclusions with nonlocal conditions, Int. J. Math. Sci. Appl. 1 (2),
101-119, 2015.
- [7] J. Chen, M. He and Y. Huang, A fast multiscale Galerkin method for solving second-
order linear Fredholm integro-differential equation with Dirichlet boundary conditions,
J. Comput. Appl. Math. 364 (1), Article ID 112352, 2020.
- [8] M. Çakır, B. Güneş and H. Duru, A novel computational method for solving nonlinear
Volterra integro-differential equation, Kuwait J. Sci. 48 (1), 31-40, 2021.
- [9] E. Çimen and M. Çakır, A uniform numerical method for solving singularly perturbed
Fredholm integro-differential problem, Comput. Appl. Math. 40, Article number 42,
2021.
- [10] E.H. Doha, M.A. Abdelkawy, A.Z.M. Amin and D. Baleanu, Shifted Jacobi spectral
collocation method with convergence analysis for solving integro-differential equations
and system of integro-differential equations, Nonlinear Anal. Model. Control 24 (3),
332-352, 2019.
- [11] M.E. Durmaz and G.M. Amiraliyev, A robust numerical method for a singularly perturbed Fredholm integro-differential equation, Mediterr. J. Math. 18, Article number
24, 2021.
- [12] S.M. El- Sayed, D. Kaya and S. Zarea, The decomposition method applied to solve
high-order linear Volterra-Fredholm integro-differential equations, Int. J. Nonlinear
Sci. Numer. Simul. 5 (2), 105-112, 2004.
- [13] A.I. Fairbairn and M.A. Kelmanson, Error analysis of a spectrally accurate Volterra-
transformation method for solving 1-D Fredholm integro-differential equations, Int. J.
Mech. Sci. textbf144, 382-391, 2018.
- [14] M. Fathy, M. El-Gamel and M.S. El-Azab, Legendre-Galerkin method for the linear
Fredholm integro-differential equations, Appl. Math. Comput. 243, 789-800, 2014.
- [15] M. Ghasemi, M. Fardi and R.K. Ghaziani, Solution of system of the mixed Volterra-
Fredholm integral equations by an analytical method, Math. Comput. Model. 58, 1522-
1530, 2013.
- [16] M. Gülsu, Y. Öztürk and M. Sezer, A new collocation method for solution of mixed
linear integro-differential-difference equations, Appl. Math. Comput. 216, 2183-2198,
2010.
- [17] A.A. Hamoud and K.P. Ghadle, The reliable modified of Adomian Decomposition
method for solving integro-differential equations, J. Chungcheong Math. Soc. 32 (4),
409-420, 2019.
- [18] A.A. Hamoud, K.H. Hussain, N.M. Mohammed and K.P. Ghadle, Solving Fredholm
integro-differential equations by using numerical techniques, Nonlinear Funct. Anal.
Appl. 24 (3), 533-542, 2019.
- [19] A.A. Hamoud, N.M. Mohammed and K.P. Ghadle, Solving mixed Volterra-Fredholm
integro differential equations by using HAM, Turk. J. Math. Comput. Sci. 12 (1),
18-25, 2020.
- [20] E. Hesameddini and M. Shahbazi, Solving multipoint problems with linear Volterra-
Fredholm integro-differential equations of the neutral type using Bernstein polynomials
method, Appl. Numer. Math. 136, 122-138, 2019.
- [21] M. Heydari, Z. Avazzadeh and G.B. Loghmani, Chebyshev cardinal functions for solving Volterra-Fredholm integro-differential equations using operational matrices, Iran. J. Sci. Technol. Trans. A Sci. 36 (1), 13-24, 2012.
- [22] B.C. Iragi and J.B. Munyazaki, A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math. 97 (4),
759-771, 2020.
- [23] K. Issa and F. Salehi, Approximate solution of perturbed Volterra-Fredholm integro-
differential equations by Chebyshev-Galerkin method, J. Math. 2017 Article ID
8213932, 2017.
- [24] A.A. Jalal, N.A. Sleman and A.I. Amen, Numerical methods for solving the system of
Volterra-Fredholm integro-differential equations, ZANCO J. Pure Appl. Sci. 31 (2),
25-30, 2019.
- [25] K.D. Kucche and M.B. Dhakne, On existence results and qualitative properties of mild
solution of semilinear mixed Volterra-Fredholm functional integro-differential equations in Banach spaces, Appl. Math. Comput. 219, 10806-10816, 2013.
- [26] M. Kudu, I. Amirali and G.M. Amiraliyev, A finite difference method for a singularly
perturbed delay integro-differential equations, J. Comput. Appl. Math. textbf308, 379-
390, 2016.
- [27] K. Kumar and R. Kumar, Existence of solutions of quasilinear mixed Volterra-
Fredholm integro differential equations with nonlocal conditions, Journal Differential
Equations and Control Processes, 3, 77-84, 2013.
- [28] A.H. Mahmood and L.H. Sadoon, Existence of a solution of certain Volterra-Fredholm
integro-differential equations, J. Educ. Sci.25(3), 62-67, 2012.
- [29] D.A. Maturi and E.A. Simbawa, The modified Decomposition method for solving
Volterra-Fredholm integro-differential equations using Maple, Int. J. GEOMATE 18
(67), 84-89, 2020.
- [30] N.A. Mbroh, S.C.O. Noutchie and R.Y.M. Massoukou, A second order finite difference
scheme for singularly perturbed Volterra integro-differential equation. Alex. Eng. J. 59,
2441-2447, 2020.
- [31] A.K.O. Mezaal, Efficient approximate method for solutions of linear mixed Volterra-
Fredholm integro differential equations, Al-Mustansiriyah J. Sci. 27 (1), 58-61, 2016.
- [32] E.H. Ouda, S. Shibab and M. Rasheed, Boubaker wavelets functions for solving
higher order integro-differential equations, J. Southwest Jiaotong Univ. 55 (2), 2020.
- [33] A. Panda, J. Mohapatra and I. Amirali, A second-order post-processing technique
for singularly perturbed Volterra integro-differential equations, Mediterr. J. Math. 18,
Article Number 231, 2021.
- [34] B. Raftari, Numerical solutions of the linear Volterra integro-differential equations:
Homotopy perturbation method and finite difference method, World Appl. Sci. J. 9,
7-12, 2010.
- [35] M.A. Ramadan and M.R. Ali, Numerical solution of Volterra-Fredholm integral equations using Hybrid orthonormal Bernstein and Block-Pulse functions, Asian Res. J.
Math. 4 (4), 1-14, 2017.
- [36] S. Shahmorad, Numerical solution of the general form linear Fredholm-Volterra
integro-differential equations by the Tau method with an error estimation, Appl.
Math. Comput. 167, 1418-1429, 2005.
- [37] A. Tari, M.Y. Rahimi, S. Shahmorad and F. Talati, Development of the Tau method
for the numerical solution of two-dimensional linear Volterra integro-differential equations, Comput. Methods Appl. Math. 9 (4), 421-435, 2009.
- [38] K. Wang and Q. Wang, Lagrange collocation method for solving Volterra-Fredholm
integral equations, Appl. Math. Comput. 219 (21), 10434-10440, 2013.
- [39] S. Yalçınbaş, M. Sezer and H.H. Sorkun, Legendre polynomial solutions of high-order
linear Fredholm integro-differential equations, Appl. Math. Comput. 210, 334-349,
2009.
- [40] Ö. Yapman and G.M. Amiraliyev, A novel second order fitted computational method
for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math.
97 (6), 1293-1302, 2020.
- [41] A. Zanib and J. Ahmad, Variational iteration method for mixed type integro-
differential equations, Math. Theory Model. (IISTE), 6 (8), 1-7, 2016.