Research Article
BibTex RIS Cite

Bihom-pre-Lie superalgebras and related structures

Year 2022, Volume: 51 Issue: 5, 1385 - 1402, 01.10.2022
https://doi.org/10.15672/hujms.1035821

Abstract

Throughout this paper, we will study Rota-Baxter operators and super $\mathcal{O}$-operator of BiHom-associative superalgebras, BiHom-Lie superalgebras, BiHom-pre-Lie superalgebras and BiHom-$L$-dendriform superalgebras. Then we give some properties of BiHom-pre-Lie superalgebras constructed from BiHom-associative superalgebras, BiHom-Lie superalgebras and BiHom-$L$-dendriform superalgebras.

References

  • [1] E. Abdaoui, S. Mabrouk and A. Makhlouf, Rota-Baxter operators on Pre-Lie Superalgebras, Bull. Malays. Math. Sci. Soc. 42, 1567-1606, 2019.
  • [2] M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys. 54, 263–277, 2000.
  • [3] M. Aguiar, Infinitesimal bialgebras, pre-Lie algebras and dendriform algebras, in "Hopf algebras", Lecture Notes in Pure and Appl. Math. 237, 1–33, 2004.
  • [4] M. Aguiar and J. L. Loday, Quadri-algebras, J. Pure Appl. Algebra ,19(3), 205-221. 2004.
  • [5] N. Aizawa and H. Sato, q-deformation of the Virasoro algebra with central extension, Phys. Lett. B, 256, 185-190, 1991.
  • [6] F. Ammar and A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra, 324, 1513–1528, 2010.
  • [7] A. Andrada and S. Salamon, Complex product structure on Lie algebras, Forum Math. 17, 261–295, 2005.
  • [8] F.V. Atkinson, Some aspects of Baxter’s functional equation, J. Math. Anal. Appl. 7, 1–30, 1967.
  • [9] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10, 731-742, 1960.
  • [10] C. M. Bai, A further study on non-abelian phase spaces: Left-symmetric algebraic approach and related geometry, Rev. Math. Phys. 18, 545–564, 2006.
  • [11] C.M. Bai, A unified algebraic approach to classical Yang-Baxter equation, J. Phys. A, 40, 11073–11082, 2007.
  • [12] C.M. Bai, O-operators of Loday algebras and analogues of the classical Yang-Baxter equation, Comm. Algebra, 38, 4277–4321, 2010.
  • [13] C.M. Bai, L. Guo and X. Ni, Generalizations of the classical Yang-Baxter equation and O-operators, J. Math. Phys. 52, 063515, 2011.
  • [14] C.M. Bai, L. Guo and X. Ni, O-operators on associative algebras and associative Yang-Baxter equations, Pacific J. Math. 256, 257–289, 2012.
  • [15] C.M. Bai and L.G. Liu, Some results on L-dendriform algebras, J. Geom. Phys. 60, 940–950, 2010.
  • [16] C.M. Bai and R. Zhang, On some left-symmetric superalgebras, J. Algebra Appl. 11 (5), 1250097, 2012.
  • [17] I. Bakayoko, Hom-post-Lie modules, O-operators and some functors on Hom-algebras, arXiv preprint, arXiv:1610.02845, 2016.
  • [18] A. Ben Hassine, S. Mabrouk and O. Ncib, 3-BiHom-Lie superalgebras induced by BiHom-Lie superalgebras, Linear Multilinear Algebra, 70(1), 101-121, 2022.
  • [19] M. Bordemann, Generalized Lax pairs, the modified classical Yang-Baxter equations, and affine geometry of Lie groups, Comm Math. Phys. 135(1), 201–216, 1990.
  • [20] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (3), 323–357, 2006.
  • [21] P. Cartier, On the structure of free Baxter algebras, Adv. Math. 9, 253–265, 1972.
  • [22] F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. IMRN 8, 395–408, 2001.
  • [23] Y. Cheng and H. Qi, Representations of BiHom-Lie algebras, Algebra Colloq. 29 (1), 125-142, 2022.
  • [24] M. Chaichian, P. Kulish and J. Lukierski, q-deformed Jacobi identity, q-oscillators and q-deformed infinitedimensional algebras, Phys. Lett. B 237, 401-406, 1990.
  • [25] B.Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 197, 145–159, 1974.
  • [26] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199, 203–242, 1998.
  • [27] T.L. Curtright and C.K. Zachos, Deforming maps for quantum algebras, Phys. Lett. B, 243, 237–244, 1990.
  • [28] J.M. Dardié and A. Medina, Algèbres de Lie Kahlériennes et double extension, J. Algebra, 185, 744–795, 1996.
  • [29] J.M. Dardié and A. Medina, Double extension symplectique d’un groupe de Lie symplectique, Adv. Math. 117, 208–227, 1996.
  • [30] A. Diatta and A. Medina, Classical Yang-Baxter equation and left-invariant affine geometry on Lie groups, Manuscipta. Math. 114, 477–486, 2004.
  • [31] K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys. 61, 139–147, 2002.
  • [32] K. Ebrahimi-Fard, On the associative Nijenhuis relation, Elect. J. Comb. 11(1), 2004.
  • [33] K. Ebrahimi-Fard, D. Manchon and F. Patras, New identities in dendriform algebras, J. Algebra, 320, 708–727, 2008.
  • [34] M. Gerstenhaber, The cohomology structure of associative ring, Ann. of Math. 78, 267–288, 1963.
  • [35] M. Goze and E. Remm, Lie-admissible algebras and operads, J. Algebra, 273, 129– 152, 2004.
  • [36] G. Graziani, A. Makhlouf, C. Menini and F. Panaite BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras, SIGMA Symmetry Integrability Geom. Methods Appl. 11, 086, 2015.
  • [37] M. Goncharov and V. Gubarev, Rota-Baxter operators of nonzero weight on the matrix algebra of order three, Linear Multilinear Algebra, 70 (6), 1055-1080, 2022.
  • [38] L. Guo, An introduction to Rota-Baxter Algebra,Somerville: International Press 2(9), 2012.
  • [39] J.-L. Koszul, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France, 89, 515–533, 1961.
  • [40] B.A. Kupershmidt, Non-abelian phase spaces, J. Phys. A, 27, 2801–2809, 1994.
  • [41] A. Lichnerowicz and A. Medina, On Lie group with left-invariant symplectic or Kählerian, Lett. Math. Phys. 16(3), 225–235, 1988.
  • [42] Liu K.Q, Characterizations of the quantum Witt algebra, Lett. Math. Phys. 24, 257– 265, 1992.
  • [43] J.-L. Loday, Dialgebras: In Dialgebras and related Operads, Springer, New York, 7–66, 2001.
  • [44] J.B. Miller, Baxter operators and endomorphisms on Banach algebras, J. Math. Anal. Appl. 25, 503–520, 1969.
  • [45] G.C. Rota, Baxter operators, In Gian-Carlo Rota on Combinatorics, Introductory Papes and commentaries, edited by Joseph. P.S. Kung, Birkhauser, Boston, 1995.
  • [46] S. Wang and S. Guo, BiHom-Lie superalgebra structures, arXiv preprint arXiv:1610.02290, 2016.
  • [47] E.A. Vasilieva and A.A. Mikhalev, Free left-symmetric superalgebras, Fundam. Prikl. Mat. 2, 611–613, 1996.
  • [48] E.B. Vinberg, The theory of homogeneous cones, Tr. Mosk. Mat. Obs. 12, 303–358, 1963.
Year 2022, Volume: 51 Issue: 5, 1385 - 1402, 01.10.2022
https://doi.org/10.15672/hujms.1035821

Abstract

References

  • [1] E. Abdaoui, S. Mabrouk and A. Makhlouf, Rota-Baxter operators on Pre-Lie Superalgebras, Bull. Malays. Math. Sci. Soc. 42, 1567-1606, 2019.
  • [2] M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys. 54, 263–277, 2000.
  • [3] M. Aguiar, Infinitesimal bialgebras, pre-Lie algebras and dendriform algebras, in "Hopf algebras", Lecture Notes in Pure and Appl. Math. 237, 1–33, 2004.
  • [4] M. Aguiar and J. L. Loday, Quadri-algebras, J. Pure Appl. Algebra ,19(3), 205-221. 2004.
  • [5] N. Aizawa and H. Sato, q-deformation of the Virasoro algebra with central extension, Phys. Lett. B, 256, 185-190, 1991.
  • [6] F. Ammar and A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra, 324, 1513–1528, 2010.
  • [7] A. Andrada and S. Salamon, Complex product structure on Lie algebras, Forum Math. 17, 261–295, 2005.
  • [8] F.V. Atkinson, Some aspects of Baxter’s functional equation, J. Math. Anal. Appl. 7, 1–30, 1967.
  • [9] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10, 731-742, 1960.
  • [10] C. M. Bai, A further study on non-abelian phase spaces: Left-symmetric algebraic approach and related geometry, Rev. Math. Phys. 18, 545–564, 2006.
  • [11] C.M. Bai, A unified algebraic approach to classical Yang-Baxter equation, J. Phys. A, 40, 11073–11082, 2007.
  • [12] C.M. Bai, O-operators of Loday algebras and analogues of the classical Yang-Baxter equation, Comm. Algebra, 38, 4277–4321, 2010.
  • [13] C.M. Bai, L. Guo and X. Ni, Generalizations of the classical Yang-Baxter equation and O-operators, J. Math. Phys. 52, 063515, 2011.
  • [14] C.M. Bai, L. Guo and X. Ni, O-operators on associative algebras and associative Yang-Baxter equations, Pacific J. Math. 256, 257–289, 2012.
  • [15] C.M. Bai and L.G. Liu, Some results on L-dendriform algebras, J. Geom. Phys. 60, 940–950, 2010.
  • [16] C.M. Bai and R. Zhang, On some left-symmetric superalgebras, J. Algebra Appl. 11 (5), 1250097, 2012.
  • [17] I. Bakayoko, Hom-post-Lie modules, O-operators and some functors on Hom-algebras, arXiv preprint, arXiv:1610.02845, 2016.
  • [18] A. Ben Hassine, S. Mabrouk and O. Ncib, 3-BiHom-Lie superalgebras induced by BiHom-Lie superalgebras, Linear Multilinear Algebra, 70(1), 101-121, 2022.
  • [19] M. Bordemann, Generalized Lax pairs, the modified classical Yang-Baxter equations, and affine geometry of Lie groups, Comm Math. Phys. 135(1), 201–216, 1990.
  • [20] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (3), 323–357, 2006.
  • [21] P. Cartier, On the structure of free Baxter algebras, Adv. Math. 9, 253–265, 1972.
  • [22] F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. IMRN 8, 395–408, 2001.
  • [23] Y. Cheng and H. Qi, Representations of BiHom-Lie algebras, Algebra Colloq. 29 (1), 125-142, 2022.
  • [24] M. Chaichian, P. Kulish and J. Lukierski, q-deformed Jacobi identity, q-oscillators and q-deformed infinitedimensional algebras, Phys. Lett. B 237, 401-406, 1990.
  • [25] B.Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 197, 145–159, 1974.
  • [26] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199, 203–242, 1998.
  • [27] T.L. Curtright and C.K. Zachos, Deforming maps for quantum algebras, Phys. Lett. B, 243, 237–244, 1990.
  • [28] J.M. Dardié and A. Medina, Algèbres de Lie Kahlériennes et double extension, J. Algebra, 185, 744–795, 1996.
  • [29] J.M. Dardié and A. Medina, Double extension symplectique d’un groupe de Lie symplectique, Adv. Math. 117, 208–227, 1996.
  • [30] A. Diatta and A. Medina, Classical Yang-Baxter equation and left-invariant affine geometry on Lie groups, Manuscipta. Math. 114, 477–486, 2004.
  • [31] K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys. 61, 139–147, 2002.
  • [32] K. Ebrahimi-Fard, On the associative Nijenhuis relation, Elect. J. Comb. 11(1), 2004.
  • [33] K. Ebrahimi-Fard, D. Manchon and F. Patras, New identities in dendriform algebras, J. Algebra, 320, 708–727, 2008.
  • [34] M. Gerstenhaber, The cohomology structure of associative ring, Ann. of Math. 78, 267–288, 1963.
  • [35] M. Goze and E. Remm, Lie-admissible algebras and operads, J. Algebra, 273, 129– 152, 2004.
  • [36] G. Graziani, A. Makhlouf, C. Menini and F. Panaite BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras, SIGMA Symmetry Integrability Geom. Methods Appl. 11, 086, 2015.
  • [37] M. Goncharov and V. Gubarev, Rota-Baxter operators of nonzero weight on the matrix algebra of order three, Linear Multilinear Algebra, 70 (6), 1055-1080, 2022.
  • [38] L. Guo, An introduction to Rota-Baxter Algebra,Somerville: International Press 2(9), 2012.
  • [39] J.-L. Koszul, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France, 89, 515–533, 1961.
  • [40] B.A. Kupershmidt, Non-abelian phase spaces, J. Phys. A, 27, 2801–2809, 1994.
  • [41] A. Lichnerowicz and A. Medina, On Lie group with left-invariant symplectic or Kählerian, Lett. Math. Phys. 16(3), 225–235, 1988.
  • [42] Liu K.Q, Characterizations of the quantum Witt algebra, Lett. Math. Phys. 24, 257– 265, 1992.
  • [43] J.-L. Loday, Dialgebras: In Dialgebras and related Operads, Springer, New York, 7–66, 2001.
  • [44] J.B. Miller, Baxter operators and endomorphisms on Banach algebras, J. Math. Anal. Appl. 25, 503–520, 1969.
  • [45] G.C. Rota, Baxter operators, In Gian-Carlo Rota on Combinatorics, Introductory Papes and commentaries, edited by Joseph. P.S. Kung, Birkhauser, Boston, 1995.
  • [46] S. Wang and S. Guo, BiHom-Lie superalgebra structures, arXiv preprint arXiv:1610.02290, 2016.
  • [47] E.A. Vasilieva and A.A. Mikhalev, Free left-symmetric superalgebras, Fundam. Prikl. Mat. 2, 611–613, 1996.
  • [48] E.B. Vinberg, The theory of homogeneous cones, Tr. Mosk. Mat. Obs. 12, 303–358, 1963.
There are 48 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Othmen Ncib 0000-0002-3730-5903

Publication Date October 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 5

Cite

APA Ncib, O. (2022). Bihom-pre-Lie superalgebras and related structures. Hacettepe Journal of Mathematics and Statistics, 51(5), 1385-1402. https://doi.org/10.15672/hujms.1035821
AMA Ncib O. Bihom-pre-Lie superalgebras and related structures. Hacettepe Journal of Mathematics and Statistics. October 2022;51(5):1385-1402. doi:10.15672/hujms.1035821
Chicago Ncib, Othmen. “Bihom-Pre-Lie Superalgebras and Related Structures”. Hacettepe Journal of Mathematics and Statistics 51, no. 5 (October 2022): 1385-1402. https://doi.org/10.15672/hujms.1035821.
EndNote Ncib O (October 1, 2022) Bihom-pre-Lie superalgebras and related structures. Hacettepe Journal of Mathematics and Statistics 51 5 1385–1402.
IEEE O. Ncib, “Bihom-pre-Lie superalgebras and related structures”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, pp. 1385–1402, 2022, doi: 10.15672/hujms.1035821.
ISNAD Ncib, Othmen. “Bihom-Pre-Lie Superalgebras and Related Structures”. Hacettepe Journal of Mathematics and Statistics 51/5 (October 2022), 1385-1402. https://doi.org/10.15672/hujms.1035821.
JAMA Ncib O. Bihom-pre-Lie superalgebras and related structures. Hacettepe Journal of Mathematics and Statistics. 2022;51:1385–1402.
MLA Ncib, Othmen. “Bihom-Pre-Lie Superalgebras and Related Structures”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, 2022, pp. 1385-02, doi:10.15672/hujms.1035821.
Vancouver Ncib O. Bihom-pre-Lie superalgebras and related structures. Hacettepe Journal of Mathematics and Statistics. 2022;51(5):1385-402.