Year 2022,
Volume: 51 Issue: 6, 1577 - 1587, 01.12.2022
Migdad Ismailov
Yusuf Zeren
,
Kader Şimşir Acar
,
Ilahe F. Aliyarova
References
- [1] D.R. Adams, Morrey spaces, Springer Int. Publ. Switzerland, 2016.
- [2] B.T. Bilalov, T.B. Gasymov and A.A. Guliyeva, On solvability of Riemann boundary
value problem in Morrey-Hardy classes, Turk. J. Math. 40 (50), 1085-1101, 2016.
- [3] B.T. Bilalov, T.B. Gasymov and G.V. Maharramova, On one method of investigation
of the basis properties of the discontinuous differential operators J. Contemporary
Appl. Math. 6 (1), 7481, 2016.
- [4] B.T. Bilalov and Z.G. Guseynov, Basicity of a system of exponents with a piecewise
linear phase in variable spaces, Mediterr. J. Math. 9 (3), 487-498, 2012.
- [5] B.T. Bilalov, A.A. Huseynli and S.R. El-Shabrawy, Basis properties of trigonometric
systems in weighted Morrey spaces, Azerbaijan J. Math. 9 (2) 200-226, 2019.
- [6] B.T. Bilalov and A.A. Quliyeva, On basicity of exponential systems in Morrey-type
spaces, Int. J. Math. 25 (6), 1-10, 2014.
- [7] B.T. Bilalov and S.R. Sadigova, On solvability in the small of higher order elliptic
equations in grand-Sobolev spaces, Complex Var. Elliptic Equ. 66 (12), 2117-2130,
2021.
- [8] B.T. Bilalov and S.R. Sadigova, Interior Schauder-type estimates for higher-order
elliptic operators in grand-Sobolev spaces, Sahand Commun. Math. Anal. 18 (2), 129-
148, 2021.
- [9] B.T. Bilalov and F.Sh. Seyidova, Basicity of a system of exponents with a piecewise
linear phase in Morrey-type spaces, Turk. J. Math. 43 (4), 18501866, 2019.
- [10] C. Capone and A. Fiorenza, On small Lebesgue spaces, J. Funct. Spaces Appl. 3,
7389, 2005.
- [11] R.E. Castilo and H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer
Int. Publ. Switzerland, 2016.
- [12] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic
Analysis, Springer, 2013.
- [13] D. Cruz-Uribe, G. Di Fratta and A. Fiorenza, Modular inequalities for the maximal
operator in variable Lebesgue spaces, Nonlin. Anal. 177(part A), 299311, 2018.
- [14] N. Danelia and V. Kokilashvili, Approximation by trigonometric polynomials in subspace
of weighted grand Lebesgue spaces, Bulletin of the Georgian National Academy
of Sciences 7, 11-15, 2013.
- [15] L. Diening, and S. Samko, Hardy inequality in variable exponent Lebesgue spaces,
Fractional Calculus and Appl. Anal. 10 (1), 118, 2007.
- [16] L. Donofrio, C. Sbordone and R. Schiattarella, Grand Sobolev spaces and their application
in geometric function theory and PDEs, J. Fixed Point Theory Appl. 13,
309-340, 2013.
- [17] D.E. Edmunds and A. Meskhi, Potential-type operators in $L^{p(x)}$ spaces, Zeitschrift
für Analysis and ihre Anwendungen 21 (3), 681690, 2002.
- [18] D.E. Edmunds and H. Triebel, Function spaces, entropy numbers, differential operators,
Cambridge Tracts in Mathematics, Cambridge Univ. Press, Cambridge, 1996.
- [19] A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math. 51(2),
131148, 2000.
- [20] A. Fiorenza and G.E. Karadzhov, Grand and small Lebesgue spaces and their analogs.
Z. Anal. Anwend. 23 (4), 657681, 2004.
- [21] L. Greco, A remark on the equality $det Df=Det Df $, Differential Integral Equations
6, 10891100, 1993.
- [22] B. Gupta, A. Fiorenza and P. Jain. The maximal theorem in weighted grand Lebesgue
spaces, Studia Math. 188 (2), 123133, 2008.
- [23] D.M. Israfilov and N.P. Tozman, Approximation by polynomials in MorreySmirnov
classes, East J. Approx. 14 (3), 255269, 2008.
- [24] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal
hypotheses, Arch. Rational Mech. Anal. 119, 129143, 1992.
- [25] T. Iwaniec and C. Sbordone, Riesz transforms and elliptic PDEs with VMO coefcients,
J. Anal. Math. 74, 183-212, 1998.
- [26] V. Kokilashvili, Boundedness criterion for the Cauchy singular integral operator
in weighted grand Lebesgue spaces and application to the Riemann problem, Proc.
A.Razmadze Math. Inst. 151, 129133, 2009.
- [27] V.M. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko , Integral Operators in Non-
Standart Function Spaces, v. 2, Variable exponent Holder, Morrey-Campanato and
Grand spaces, Birkhauser, 2016.
- [28] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations,
Trans. Amer. Math. Soc. 43 (4), 126-166, 1938.
- [29] A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)} (R)$ Math, Inequal. Appl.
7, 255265, 2004.
- [30] H. Rafeiro and A. Vargas, On the compactness in grand spaces, Georgian Math. J.
22 (1), 141-152, 2015.
- [31] S.G. Samko, Convolution and potential type operators in $L^{p(x)} (R^n)$, Integral Transform.
Spec. Funct. 7 (3-4), 261284, 1996.
- [32] I.I. Sharapudinov, On the topology of the space $L^{p(.)}(0,1)$, Mat. Zametki 26 (4), 613-
632 (in Russian), 1979.
- [33] I.I. Sharapudinov, On direct and inverse theorems of approximation theory in variable
Lebesgue and Sobolev spaces, Azerbaijan J. Math. 4 (1), 5572, 2014.
- [34] Y. Zeren, M.I. Ismailov and C. Karacam, Korovkin-type theorems and their statistical
versions in grand Lebesgue spaces, Turk. J. Math. 44, 1027-1041, 2020.
- [35] Y. Zeren, M. Ismailov and F. Sirin, On basicity of the system of eigenfunctions of
one discontinuous spectral problem for second order differential equation for grand
Lebesgue space, Turk. J. Math. 44 (5), 1995-1611, 2020.
- [36] C.T. Zorko, Morrey spaces, Proc. Amer. Math. Soc. 1986, 98 (4), 586-592.
On basicity of exponential and trigonometric systems in grand Lebesgue spaces
Year 2022,
Volume: 51 Issue: 6, 1577 - 1587, 01.12.2022
Migdad Ismailov
Yusuf Zeren
,
Kader Şimşir Acar
,
Ilahe F. Aliyarova
Abstract
Basis properties of exponential and trigonometric systems in grand Lebesgue spaces $ L_{p)} (-\pi,\pi) $ are studied. Based on a shift operator, we consider the subspace $G_{p)} (-\pi,\pi)$ of the space $ L_{p)} (-\pi,\pi) $, where continuous functions are dense, and the boundedness of the singular operator in this subspace is proved. We establish the basicity of exponential system $ \{{e^{int}}\}_{n\in Z}$ for $G_{p)} (-\pi,\pi)$ and the basicity of trigonometric systems $ \{{\sin{nt}}\}_{n\in N }$ and $ \{{\cos{nt}}\}_{n\in N_0}$ for $G_{p)} (0,\pi)$.
References
- [1] D.R. Adams, Morrey spaces, Springer Int. Publ. Switzerland, 2016.
- [2] B.T. Bilalov, T.B. Gasymov and A.A. Guliyeva, On solvability of Riemann boundary
value problem in Morrey-Hardy classes, Turk. J. Math. 40 (50), 1085-1101, 2016.
- [3] B.T. Bilalov, T.B. Gasymov and G.V. Maharramova, On one method of investigation
of the basis properties of the discontinuous differential operators J. Contemporary
Appl. Math. 6 (1), 7481, 2016.
- [4] B.T. Bilalov and Z.G. Guseynov, Basicity of a system of exponents with a piecewise
linear phase in variable spaces, Mediterr. J. Math. 9 (3), 487-498, 2012.
- [5] B.T. Bilalov, A.A. Huseynli and S.R. El-Shabrawy, Basis properties of trigonometric
systems in weighted Morrey spaces, Azerbaijan J. Math. 9 (2) 200-226, 2019.
- [6] B.T. Bilalov and A.A. Quliyeva, On basicity of exponential systems in Morrey-type
spaces, Int. J. Math. 25 (6), 1-10, 2014.
- [7] B.T. Bilalov and S.R. Sadigova, On solvability in the small of higher order elliptic
equations in grand-Sobolev spaces, Complex Var. Elliptic Equ. 66 (12), 2117-2130,
2021.
- [8] B.T. Bilalov and S.R. Sadigova, Interior Schauder-type estimates for higher-order
elliptic operators in grand-Sobolev spaces, Sahand Commun. Math. Anal. 18 (2), 129-
148, 2021.
- [9] B.T. Bilalov and F.Sh. Seyidova, Basicity of a system of exponents with a piecewise
linear phase in Morrey-type spaces, Turk. J. Math. 43 (4), 18501866, 2019.
- [10] C. Capone and A. Fiorenza, On small Lebesgue spaces, J. Funct. Spaces Appl. 3,
7389, 2005.
- [11] R.E. Castilo and H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer
Int. Publ. Switzerland, 2016.
- [12] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic
Analysis, Springer, 2013.
- [13] D. Cruz-Uribe, G. Di Fratta and A. Fiorenza, Modular inequalities for the maximal
operator in variable Lebesgue spaces, Nonlin. Anal. 177(part A), 299311, 2018.
- [14] N. Danelia and V. Kokilashvili, Approximation by trigonometric polynomials in subspace
of weighted grand Lebesgue spaces, Bulletin of the Georgian National Academy
of Sciences 7, 11-15, 2013.
- [15] L. Diening, and S. Samko, Hardy inequality in variable exponent Lebesgue spaces,
Fractional Calculus and Appl. Anal. 10 (1), 118, 2007.
- [16] L. Donofrio, C. Sbordone and R. Schiattarella, Grand Sobolev spaces and their application
in geometric function theory and PDEs, J. Fixed Point Theory Appl. 13,
309-340, 2013.
- [17] D.E. Edmunds and A. Meskhi, Potential-type operators in $L^{p(x)}$ spaces, Zeitschrift
für Analysis and ihre Anwendungen 21 (3), 681690, 2002.
- [18] D.E. Edmunds and H. Triebel, Function spaces, entropy numbers, differential operators,
Cambridge Tracts in Mathematics, Cambridge Univ. Press, Cambridge, 1996.
- [19] A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math. 51(2),
131148, 2000.
- [20] A. Fiorenza and G.E. Karadzhov, Grand and small Lebesgue spaces and their analogs.
Z. Anal. Anwend. 23 (4), 657681, 2004.
- [21] L. Greco, A remark on the equality $det Df=Det Df $, Differential Integral Equations
6, 10891100, 1993.
- [22] B. Gupta, A. Fiorenza and P. Jain. The maximal theorem in weighted grand Lebesgue
spaces, Studia Math. 188 (2), 123133, 2008.
- [23] D.M. Israfilov and N.P. Tozman, Approximation by polynomials in MorreySmirnov
classes, East J. Approx. 14 (3), 255269, 2008.
- [24] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal
hypotheses, Arch. Rational Mech. Anal. 119, 129143, 1992.
- [25] T. Iwaniec and C. Sbordone, Riesz transforms and elliptic PDEs with VMO coefcients,
J. Anal. Math. 74, 183-212, 1998.
- [26] V. Kokilashvili, Boundedness criterion for the Cauchy singular integral operator
in weighted grand Lebesgue spaces and application to the Riemann problem, Proc.
A.Razmadze Math. Inst. 151, 129133, 2009.
- [27] V.M. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko , Integral Operators in Non-
Standart Function Spaces, v. 2, Variable exponent Holder, Morrey-Campanato and
Grand spaces, Birkhauser, 2016.
- [28] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations,
Trans. Amer. Math. Soc. 43 (4), 126-166, 1938.
- [29] A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)} (R)$ Math, Inequal. Appl.
7, 255265, 2004.
- [30] H. Rafeiro and A. Vargas, On the compactness in grand spaces, Georgian Math. J.
22 (1), 141-152, 2015.
- [31] S.G. Samko, Convolution and potential type operators in $L^{p(x)} (R^n)$, Integral Transform.
Spec. Funct. 7 (3-4), 261284, 1996.
- [32] I.I. Sharapudinov, On the topology of the space $L^{p(.)}(0,1)$, Mat. Zametki 26 (4), 613-
632 (in Russian), 1979.
- [33] I.I. Sharapudinov, On direct and inverse theorems of approximation theory in variable
Lebesgue and Sobolev spaces, Azerbaijan J. Math. 4 (1), 5572, 2014.
- [34] Y. Zeren, M.I. Ismailov and C. Karacam, Korovkin-type theorems and their statistical
versions in grand Lebesgue spaces, Turk. J. Math. 44, 1027-1041, 2020.
- [35] Y. Zeren, M. Ismailov and F. Sirin, On basicity of the system of eigenfunctions of
one discontinuous spectral problem for second order differential equation for grand
Lebesgue space, Turk. J. Math. 44 (5), 1995-1611, 2020.
- [36] C.T. Zorko, Morrey spaces, Proc. Amer. Math. Soc. 1986, 98 (4), 586-592.