BibTex RIS Cite

A Generalization of Reduced Rings

Year 2012, Volume: 41 Issue: 5, 689 - 696, 01.05.2012

References

  • Agayev, N., Halicioglu, S. and Harmanci, A. On symmetric modules, Riv. Mat. Univ. Parma 8, 91–99, 2009.
  • Agayev, N., Gungoroglu, G., Harmanci, A. and Halicioglu, S. Central Armendariz rings, Bull. Malays. Math. Sci. Soc. (2) 34(1), 137–145, 2011.
  • Agayev, N., Ozen, T. and Harmanci, A. On a class of semicommutative rings, Kyungpook Math. J. 51, 283–291, 2011.
  • Anderson, D. D. and Camillo, V. Armendariz rings and Gaussian rings, Comm. Algebra (7), 2265–2272, 1998.
  • Antoine, R. Nilpotent elements and Armendariz rings, J. Algebra 319, 3128–3140, 2008.
  • Armendariz, E. A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18, –473, 1974.
  • Birkenmeier, G. F., Kim, J. Y. and Park, J. K. On extensions of Baer and quasi-Baer Rings, J. Pure Appl. Algebra 159, 25–42, 2001.
  • Birkenmeier, G. F., Kim, J. Y. and Park, J. K. Principally quasi-Baer rings, Comm. Alge- bra 29 (2), 639–660, 2001.
  • Cohn, P. M. Reversible rings, Bull. London Math. Soc. 31 (6), 641–648, 1999.
  • Hirano, Y. Some studies of strongly π-regular rings, Math. J. Okayama Univ. 20 (2), 141– , 1978.
  • Hong, C. Y., Kim, N. K. and Kwak, T. K. Ore extensions of Baer and p.p.-rings, J. Pure and Appl. Algebra, 151 (3), 215–226, 2000.
  • Hwang, S. U., Jeon, C. H. and Park, K. S. A generalization of insertion of factors property, Bull. Korean Math. Soc. 44 (1), 87–94, 2007.
  • Lee, T. K. and Zhou, Y. Reduced Modules, Rings, Modules, Algebras and Abelian Groups, (Lecture Notes in Pure and Appl. Math. 236, Dekker, NewYork, 2004), 365–377.
  • Liang, L., Wang, L. and Liu, Z. On a generalization of semicommutative rings, Taiwanese J. Math. 11 (5), 1359–1368, 2007.
  • Liu, L. and Zhao, R. On weak Armendariz rings, Comm. Algebra 34 (7), 2607–2616, 2006.
  • Rege, M. B. and Chhawchharia, S. Armendariz rings, Proc. Japan Acad. Ser. A, Math. Sci. , 14–17, 1997.
  • Shin, G. Prime ideals and sheaf represantations of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184, 43–69, 1973.

A Generalization of Reduced Rings

Year 2012, Volume: 41 Issue: 5, 689 - 696, 01.05.2012

References

  • Agayev, N., Halicioglu, S. and Harmanci, A. On symmetric modules, Riv. Mat. Univ. Parma 8, 91–99, 2009.
  • Agayev, N., Gungoroglu, G., Harmanci, A. and Halicioglu, S. Central Armendariz rings, Bull. Malays. Math. Sci. Soc. (2) 34(1), 137–145, 2011.
  • Agayev, N., Ozen, T. and Harmanci, A. On a class of semicommutative rings, Kyungpook Math. J. 51, 283–291, 2011.
  • Anderson, D. D. and Camillo, V. Armendariz rings and Gaussian rings, Comm. Algebra (7), 2265–2272, 1998.
  • Antoine, R. Nilpotent elements and Armendariz rings, J. Algebra 319, 3128–3140, 2008.
  • Armendariz, E. A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18, –473, 1974.
  • Birkenmeier, G. F., Kim, J. Y. and Park, J. K. On extensions of Baer and quasi-Baer Rings, J. Pure Appl. Algebra 159, 25–42, 2001.
  • Birkenmeier, G. F., Kim, J. Y. and Park, J. K. Principally quasi-Baer rings, Comm. Alge- bra 29 (2), 639–660, 2001.
  • Cohn, P. M. Reversible rings, Bull. London Math. Soc. 31 (6), 641–648, 1999.
  • Hirano, Y. Some studies of strongly π-regular rings, Math. J. Okayama Univ. 20 (2), 141– , 1978.
  • Hong, C. Y., Kim, N. K. and Kwak, T. K. Ore extensions of Baer and p.p.-rings, J. Pure and Appl. Algebra, 151 (3), 215–226, 2000.
  • Hwang, S. U., Jeon, C. H. and Park, K. S. A generalization of insertion of factors property, Bull. Korean Math. Soc. 44 (1), 87–94, 2007.
  • Lee, T. K. and Zhou, Y. Reduced Modules, Rings, Modules, Algebras and Abelian Groups, (Lecture Notes in Pure and Appl. Math. 236, Dekker, NewYork, 2004), 365–377.
  • Liang, L., Wang, L. and Liu, Z. On a generalization of semicommutative rings, Taiwanese J. Math. 11 (5), 1359–1368, 2007.
  • Liu, L. and Zhao, R. On weak Armendariz rings, Comm. Algebra 34 (7), 2607–2616, 2006.
  • Rege, M. B. and Chhawchharia, S. Armendariz rings, Proc. Japan Acad. Ser. A, Math. Sci. , 14–17, 1997.
  • Shin, G. Prime ideals and sheaf represantations of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184, 43–69, 1973.
There are 17 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

Handan Kose

Burcu Ungor This is me

Sait Halicioglu This is me

Publication Date May 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 5

Cite

APA Kose, H., Ungor, B., & Halicioglu, S. (2012). A Generalization of Reduced Rings. Hacettepe Journal of Mathematics and Statistics, 41(5), 689-696.
AMA Kose H, Ungor B, Halicioglu S. A Generalization of Reduced Rings. Hacettepe Journal of Mathematics and Statistics. May 2012;41(5):689-696.
Chicago Kose, Handan, Burcu Ungor, and Sait Halicioglu. “A Generalization of Reduced Rings”. Hacettepe Journal of Mathematics and Statistics 41, no. 5 (May 2012): 689-96.
EndNote Kose H, Ungor B, Halicioglu S (May 1, 2012) A Generalization of Reduced Rings. Hacettepe Journal of Mathematics and Statistics 41 5 689–696.
IEEE H. Kose, B. Ungor, and S. Halicioglu, “A Generalization of Reduced Rings”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 5, pp. 689–696, 2012.
ISNAD Kose, Handan et al. “A Generalization of Reduced Rings”. Hacettepe Journal of Mathematics and Statistics 41/5 (May 2012), 689-696.
JAMA Kose H, Ungor B, Halicioglu S. A Generalization of Reduced Rings. Hacettepe Journal of Mathematics and Statistics. 2012;41:689–696.
MLA Kose, Handan et al. “A Generalization of Reduced Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 5, 2012, pp. 689-96.
Vancouver Kose H, Ungor B, Halicioglu S. A Generalization of Reduced Rings. Hacettepe Journal of Mathematics and Statistics. 2012;41(5):689-96.