Research Article
BibTex RIS Cite

Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring

Year 2023, Volume: 52 Issue: 5, 1379 - 1395, 31.10.2023
https://doi.org/10.15672/hujms.961868

Abstract

In this study, the stress-strength reliability, $R=P(Y

References

  • [1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance index for Kumaraswamy distribution under first-failure progressive censoring scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
  • [1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance index for Kumaraswamy distribution under first-failure progressive censoring scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
  • [2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14 (11), 5239-5247, 2017.
  • [2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14 (11), 5239-5247, 2017.
  • [3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability for the exponential power (EP) distribution based on progressive type-II censored samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
  • [3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability for the exponential power (EP) distribution based on progressive type-II censored samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
  • [4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685- 1702, 2006.
  • [4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685- 1702, 2006.
  • [5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
  • [5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
  • [6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions), Test 16 (2), 211-296, 2007.
  • [6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions), Test 16 (2), 211-296, 2007.
  • [7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Springer Science & Business Media, 2000.
  • [7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Springer Science & Business Media, 2000.
  • [8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
  • [8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
  • [9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
  • [9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
  • [10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
  • [10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
  • [11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3), 327-339, 1963.
  • [11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3), 327-339, 1963.
  • [12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric inference for the reliability of copula-based stress-strength models, Qual. Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
  • [12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric inference for the reliability of copula-based stress-strength models, Qual. Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
  • [13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the generalized Gompertz distribution under progressive type-II right censored samples, Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
  • [13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the generalized Gompertz distribution under progressive type-II right censored samples, Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
  • [14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, 1982.
  • [14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, 1982.
  • [15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution, Appl. Math. Model. 37 (1-2), 13-24, 2013.
  • [15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution, Appl. Math. Model. 37 (1-2), 13-24, 2013.
  • [16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
  • [16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
  • [17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45 (2), 641-659, 2021.
  • [17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45 (2), 641-659, 2021.
  • [18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
  • [18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
  • [19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis of mechanical components under multistage load based on strength degradation, Qual. Reliab. Eng. Int. 37 (2), 567-582, 2021.
  • [19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis of mechanical components under multistage load based on strength degradation, Qual. Reliab. Eng. Int. 37 (2), 567-582, 2021.
  • [20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution, Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
  • [20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution, Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
  • [21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066, 2017.
  • [21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066, 2017.
  • [22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
  • [22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
  • [23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339- 352, 2013.
  • [23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339- 352, 2013.
  • [24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat. Methodol. 20 (1), 102–107, 1958.
  • [24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat. Methodol. 20 (1), 102–107, 1958.
  • [25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación Operative 31, 223-245, 1980.
  • [25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación Operative 31, 223-245, 1980.
  • [26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
  • [26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
  • [27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance index with power Rayleigh distribution based on progressive first-failure– censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
  • [27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance index with power Rayleigh distribution based on progressive first-failure– censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
  • [28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive censoring, Technometrics 13 (3), 521-534, 1971.
  • [28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive censoring, Technometrics 13 (3), 521-534, 1971.
  • [29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386, 2002.
  • [29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386, 2002.
  • [30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
  • [30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
  • [31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y) for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
  • [31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y) for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
  • [32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
  • [32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
  • [33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447- 1453, 2017.
  • [33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447- 1453, 2017.
  • [34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
  • [34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
  • [35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729- 744, 2012.
  • [35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729- 744, 2012.
  • [36] A.A. Soliman, Estimation of parameters of life from progressively censored data using Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
  • [36] A.A. Soliman, Estimation of parameters of life from progressively censored data using Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
  • [37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42 (24), 4476-4498, 2013.
  • [37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42 (24), 4476-4498, 2013.
  • [38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, Technometrics 36 (1), 84-91, 1994.
  • [38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, Technometrics 36 (1), 84-91, 1994.
  • [39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
  • [39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
  • [40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling, Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
  • [40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling, Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
  • [41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic distribution under adaptive type II progressive censoring, Entropy 23 (12), 1558, 2021.
  • [41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic distribution under adaptive type II progressive censoring, Entropy 23 (12), 1558, 2021.
  • [42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71, 1996.
  • [42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71, 1996.
Year 2023, Volume: 52 Issue: 5, 1379 - 1395, 31.10.2023
https://doi.org/10.15672/hujms.961868

Abstract

References

  • [1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance index for Kumaraswamy distribution under first-failure progressive censoring scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
  • [1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance index for Kumaraswamy distribution under first-failure progressive censoring scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
  • [2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14 (11), 5239-5247, 2017.
  • [2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14 (11), 5239-5247, 2017.
  • [3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability for the exponential power (EP) distribution based on progressive type-II censored samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
  • [3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability for the exponential power (EP) distribution based on progressive type-II censored samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
  • [4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685- 1702, 2006.
  • [4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685- 1702, 2006.
  • [5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
  • [5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
  • [6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions), Test 16 (2), 211-296, 2007.
  • [6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions), Test 16 (2), 211-296, 2007.
  • [7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Springer Science & Business Media, 2000.
  • [7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Springer Science & Business Media, 2000.
  • [8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
  • [8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
  • [9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
  • [9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
  • [10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
  • [10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
  • [11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3), 327-339, 1963.
  • [11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3), 327-339, 1963.
  • [12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric inference for the reliability of copula-based stress-strength models, Qual. Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
  • [12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric inference for the reliability of copula-based stress-strength models, Qual. Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
  • [13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the generalized Gompertz distribution under progressive type-II right censored samples, Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
  • [13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the generalized Gompertz distribution under progressive type-II right censored samples, Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
  • [14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, 1982.
  • [14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, 1982.
  • [15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution, Appl. Math. Model. 37 (1-2), 13-24, 2013.
  • [15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution, Appl. Math. Model. 37 (1-2), 13-24, 2013.
  • [16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
  • [16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
  • [17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45 (2), 641-659, 2021.
  • [17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45 (2), 641-659, 2021.
  • [18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
  • [18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
  • [19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis of mechanical components under multistage load based on strength degradation, Qual. Reliab. Eng. Int. 37 (2), 567-582, 2021.
  • [19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis of mechanical components under multistage load based on strength degradation, Qual. Reliab. Eng. Int. 37 (2), 567-582, 2021.
  • [20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution, Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
  • [20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution, Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
  • [21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066, 2017.
  • [21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066, 2017.
  • [22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
  • [22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
  • [23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339- 352, 2013.
  • [23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339- 352, 2013.
  • [24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat. Methodol. 20 (1), 102–107, 1958.
  • [24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat. Methodol. 20 (1), 102–107, 1958.
  • [25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación Operative 31, 223-245, 1980.
  • [25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación Operative 31, 223-245, 1980.
  • [26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
  • [26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
  • [27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance index with power Rayleigh distribution based on progressive first-failure– censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
  • [27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance index with power Rayleigh distribution based on progressive first-failure– censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
  • [28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive censoring, Technometrics 13 (3), 521-534, 1971.
  • [28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive censoring, Technometrics 13 (3), 521-534, 1971.
  • [29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386, 2002.
  • [29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386, 2002.
  • [30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
  • [30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
  • [31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y) for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
  • [31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y) for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
  • [32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
  • [32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
  • [33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447- 1453, 2017.
  • [33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447- 1453, 2017.
  • [34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
  • [34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
  • [35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729- 744, 2012.
  • [35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729- 744, 2012.
  • [36] A.A. Soliman, Estimation of parameters of life from progressively censored data using Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
  • [36] A.A. Soliman, Estimation of parameters of life from progressively censored data using Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
  • [37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42 (24), 4476-4498, 2013.
  • [37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42 (24), 4476-4498, 2013.
  • [38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, Technometrics 36 (1), 84-91, 1994.
  • [38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively censored data, Technometrics 36 (1), 84-91, 1994.
  • [39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
  • [39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
  • [40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling, Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
  • [40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling, Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
  • [41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic distribution under adaptive type II progressive censoring, Entropy 23 (12), 1558, 2021.
  • [41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic distribution under adaptive type II progressive censoring, Entropy 23 (12), 1558, 2021.
  • [42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71, 1996.
  • [42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71, 1996.
There are 84 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Fatma Çiftci 0000-0001-6362-1777

Buğra Saraçoğlu 0000-0003-1713-2862

Neriman Akdam 0000-0002-0204-6657

Yunus Akdoğan 0000-0003-3520-7493

Early Pub Date May 7, 2023
Publication Date October 31, 2023
Published in Issue Year 2023 Volume: 52 Issue: 5

Cite

APA Çiftci, F., Saraçoğlu, B., Akdam, N., Akdoğan, Y. (2023). Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring. Hacettepe Journal of Mathematics and Statistics, 52(5), 1379-1395. https://doi.org/10.15672/hujms.961868
AMA Çiftci F, Saraçoğlu B, Akdam N, Akdoğan Y. Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring. Hacettepe Journal of Mathematics and Statistics. October 2023;52(5):1379-1395. doi:10.15672/hujms.961868
Chicago Çiftci, Fatma, Buğra Saraçoğlu, Neriman Akdam, and Yunus Akdoğan. “Estimation of Stress-Strength Reliability for Generalized Gompertz Distribution under Progressive Type-II Censoring”. Hacettepe Journal of Mathematics and Statistics 52, no. 5 (October 2023): 1379-95. https://doi.org/10.15672/hujms.961868.
EndNote Çiftci F, Saraçoğlu B, Akdam N, Akdoğan Y (October 1, 2023) Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring. Hacettepe Journal of Mathematics and Statistics 52 5 1379–1395.
IEEE F. Çiftci, B. Saraçoğlu, N. Akdam, and Y. Akdoğan, “Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, pp. 1379–1395, 2023, doi: 10.15672/hujms.961868.
ISNAD Çiftci, Fatma et al. “Estimation of Stress-Strength Reliability for Generalized Gompertz Distribution under Progressive Type-II Censoring”. Hacettepe Journal of Mathematics and Statistics 52/5 (October 2023), 1379-1395. https://doi.org/10.15672/hujms.961868.
JAMA Çiftci F, Saraçoğlu B, Akdam N, Akdoğan Y. Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring. Hacettepe Journal of Mathematics and Statistics. 2023;52:1379–1395.
MLA Çiftci, Fatma et al. “Estimation of Stress-Strength Reliability for Generalized Gompertz Distribution under Progressive Type-II Censoring”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, 2023, pp. 1379-95, doi:10.15672/hujms.961868.
Vancouver Çiftci F, Saraçoğlu B, Akdam N, Akdoğan Y. Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring. Hacettepe Journal of Mathematics and Statistics. 2023;52(5):1379-95.