Year 2024,
Volume: 53 Issue: 4, 1024 - 1038, 27.08.2024
Jae Won Lee
,
Majid Ali Choudhary
,
Aliya Naaz Sıddıquı
References
- [1] M. Aslam and A.N. Siddiqui, Bounds for generalized normalized -Casorati curvature
for submanifold in real space forms endowed with a quarter-symmetric connection,
Balkan J. Geom. Appl. 27 (2), 1-12, 2022.
- [2] O. Bahadr and S. Uddin, Slant submanifolds of Golden Riemannian manifolds, J.
Math. Ext. 13 (4), 2019.
- [3] D. Blair, Quasi-umbilical, minimal submanifolds of Euclidean space, Simon Stevin
51, 3-22, 1977.
- [4] B.Y. Chen, Some pinching and classification theorems for minimal submanifolds,
Arch. Math. 60, 568-578, 1993.
- [5] M. Crasmareanu and C. Hretcanu, Golden differential geometry, Chaos Solitons Fractals,
38 (5), 1229-1238, 2008.
- [6] S. Decu, S. Haesen and L. Verstraelen, Optimal inequalities involving Casorati curvatures,
Bull. Transylv. Univ. Braÿsov, Ser. B 14 (49), 85-93, 2007.
- [7] S. Decu, S. Haesen and L. Verstraelen, Optimal inequalities characterising quasiumbilical
submanifolds, J. Inequal. Pure Appl. Math. 9 (3), Article ID 79, 2008.
- [8] A. Friedmann and A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragungen,
Mathematische Zeitschrift 21, 211-223, 1924.
- [9] A. Gezer, N. Cengiz and A. Salimov, On integrability of Golden Riemannian structures,
Turkish J. Math. 37, 693-703, 2013.
- [10] V. Ghisoiu, Inequalities for the Casorati curvatures of slant submanifolds in complex
space forms, In: Riemannian Geometry and Applications. Proceedings RIGA 2011, .
Ed. Univ. Bucureÿsti, Bucharest 145-150, 2011.
- [11] S.I. Goldberg and K. Yano, Polynomial structures on manifolds, Kodai Math. Sem.
Rep. 22, 199-218, 1970.
- [12] H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34, 27-50,
1932.
- [13] C. Hretcanu and M. Crasmareanu, On some invariant submanifolds in a Riemannian
manifold with golden structure, An. Stiins. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 53,
199-211, 2007.
- [14] C. Hretcanu and M. Crasmareanu, Applications of the golden ratio on Riemannian
manifolds, Turkish J. Math. 33, 179-191, 2009.
- [15] T. Imai, Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection,
Tensor(N.S.), 23, 300-306, 1972.
- [16] T. Imai, Notes on semi-symmetric metric connection, Tensor(N.S.), 24, 293-296,
1972.
- [17] C.W. Lee, D.W. Yoon and J.W. Lee, Optimal inequalities for the Casorati curvatures
of submanifolds of real space forms endowed with semi-symmetric metric connections,
J. Inequal. Appl. 2014:327, 9 pp. MR 3344114, 2014.
- [18] C.W. Lee, J.W. Lee and G.E. Vilcu, Optimal inequalities for the normalized $\delta$-
Casorati curvatures of submanifolds in Kenmotsu space forms, Advances in Geom.
17, 2017.
- [19] J.W. Lee and G.E. Vilcu, Inequalities for generalized normalized Casorati curvatures
of slant submanifolds in quaternion space forms, Taiwanese J. Math. 19, 691-702,
2015.
- [20] C.W. Lee, J.W. Lee, G.E. Vilcu, and D.W. Yoon, Optimal Inequalities for the Casorati
curvatures of submanifolds of generalized space forms endowed with semi-symmetric
metric connections, Bull. Korean Math. Soc. 52, 16311647, 2015.
- [21] X. Liu, On Ricci curvature of totally real submanifolds in a quaternion projective
space, Arch. Math. 38 (4), 297-305, 2002.
- [22] X. Liu and W. Dai, Ricci curvature of submanifolds in a quaternion projective space,
Commun. Korean Math. Soc. 17 (4), 625-633, 2002.
- [23] A. Mihai and C. Ozgur, Chen inequalities for submanifolds of real space forms with
a semi-symmetric metric connection, Taiwanese J. Math. 14, 1465-1477, 2010.
- [24] A. Mihai and C. Ozgur, Chen inequalities for submanifolds of complex space forms
and Sasakian space forms endowed with semi-symmetric metric connection, Rocky
Mountain J. Math., 41, 1653-1673, 2011.
- [25] I. Mihai, F.R. Al-Solamy and M.H. Shahid, On Ricci curvature of a quaternion CRsubmanifold
in a quaternion space form, Rad. Mat. 12 (1), 91-98, 2003.
- [26] Z. Nakao, Submanifolds of a Riemannian manifold with semi-symmetric metric connections,
Proc. Amer. Math. Soc. 54, 261-266, 1976.
- [27] T. Oprea, Optimization methods on Riemannian submanifolds, An. Univ. Bucuresti
Math. 54, 127-136, 2005.
- [28] M. Ozkan, Prolongations of golden structures to tangent bundles, Differential Geometry
- Dynamical Sytem. 16, 227-23, 2014.
- [29] N.O. Poyraz and Y. Erol, Lightlike Hypersurfaces of a Golden Semi-Riemannian Manifold,
Mediterr. J. Math. 14:204, DOI 10.1007/s00009-017-0999-2, 2017.
- [30] S.S. Shukla and P.K. Rao, Ricci curvature of quaternion slant submanifolds in quaternion
space forms, Acta Math. Acad. Paedagog. Nyházi 28 (1), 69-81, 2012.
- [31] A.N. Siddiqui, Upper bound inequalities for $\delta$-Casorati curvatures of submanifolds
in generalized Sasakian space forms admitting a semi-symmetric metric connection,
Inter. Elec. J. Geom. 11 (1), 57-67, 2018.
- [32] M.M. Tripathi, Inequalities for algebraic Casorati curvatures and their applications,
arXiv:1607.05828v1 [math.DG] 20 Jul 2016.
- [33] G.E. Vilcu, On Chen invariant and inequalities in quaternionic geometry, J. Inequal.
Appl. 2013, Article ID 66, 2013
- [34] K. Yano, On semi-symmetric metric connection, Rev. roumaine Math. Pure Appl.
15, 1579-1586, 1970.
- [35] P. Zhang, L. Zhang and W. Song, Inequalities for submanifolds of a Riemannian manifold
of quasi-constant curvature with a semi-symmetric metric connection, Taiwanese
J. Math. 18, 1841-1862, 2014.
Some bounds for Casorati curvatures on Golden Riemannian space forms with SSM connection
Year 2024,
Volume: 53 Issue: 4, 1024 - 1038, 27.08.2024
Jae Won Lee
,
Majid Ali Choudhary
,
Aliya Naaz Sıddıquı
Abstract
In this article, we derive some sharp inequalities for slant submanifolds immersed into golden Riemannian space forms with a semi-symmetric metric connection. Also, we characterize submanifolds for the case of equalities. Lastly, we discuss these inequalities for some special submanifolds.
References
- [1] M. Aslam and A.N. Siddiqui, Bounds for generalized normalized -Casorati curvature
for submanifold in real space forms endowed with a quarter-symmetric connection,
Balkan J. Geom. Appl. 27 (2), 1-12, 2022.
- [2] O. Bahadr and S. Uddin, Slant submanifolds of Golden Riemannian manifolds, J.
Math. Ext. 13 (4), 2019.
- [3] D. Blair, Quasi-umbilical, minimal submanifolds of Euclidean space, Simon Stevin
51, 3-22, 1977.
- [4] B.Y. Chen, Some pinching and classification theorems for minimal submanifolds,
Arch. Math. 60, 568-578, 1993.
- [5] M. Crasmareanu and C. Hretcanu, Golden differential geometry, Chaos Solitons Fractals,
38 (5), 1229-1238, 2008.
- [6] S. Decu, S. Haesen and L. Verstraelen, Optimal inequalities involving Casorati curvatures,
Bull. Transylv. Univ. Braÿsov, Ser. B 14 (49), 85-93, 2007.
- [7] S. Decu, S. Haesen and L. Verstraelen, Optimal inequalities characterising quasiumbilical
submanifolds, J. Inequal. Pure Appl. Math. 9 (3), Article ID 79, 2008.
- [8] A. Friedmann and A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragungen,
Mathematische Zeitschrift 21, 211-223, 1924.
- [9] A. Gezer, N. Cengiz and A. Salimov, On integrability of Golden Riemannian structures,
Turkish J. Math. 37, 693-703, 2013.
- [10] V. Ghisoiu, Inequalities for the Casorati curvatures of slant submanifolds in complex
space forms, In: Riemannian Geometry and Applications. Proceedings RIGA 2011, .
Ed. Univ. Bucureÿsti, Bucharest 145-150, 2011.
- [11] S.I. Goldberg and K. Yano, Polynomial structures on manifolds, Kodai Math. Sem.
Rep. 22, 199-218, 1970.
- [12] H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34, 27-50,
1932.
- [13] C. Hretcanu and M. Crasmareanu, On some invariant submanifolds in a Riemannian
manifold with golden structure, An. Stiins. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 53,
199-211, 2007.
- [14] C. Hretcanu and M. Crasmareanu, Applications of the golden ratio on Riemannian
manifolds, Turkish J. Math. 33, 179-191, 2009.
- [15] T. Imai, Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection,
Tensor(N.S.), 23, 300-306, 1972.
- [16] T. Imai, Notes on semi-symmetric metric connection, Tensor(N.S.), 24, 293-296,
1972.
- [17] C.W. Lee, D.W. Yoon and J.W. Lee, Optimal inequalities for the Casorati curvatures
of submanifolds of real space forms endowed with semi-symmetric metric connections,
J. Inequal. Appl. 2014:327, 9 pp. MR 3344114, 2014.
- [18] C.W. Lee, J.W. Lee and G.E. Vilcu, Optimal inequalities for the normalized $\delta$-
Casorati curvatures of submanifolds in Kenmotsu space forms, Advances in Geom.
17, 2017.
- [19] J.W. Lee and G.E. Vilcu, Inequalities for generalized normalized Casorati curvatures
of slant submanifolds in quaternion space forms, Taiwanese J. Math. 19, 691-702,
2015.
- [20] C.W. Lee, J.W. Lee, G.E. Vilcu, and D.W. Yoon, Optimal Inequalities for the Casorati
curvatures of submanifolds of generalized space forms endowed with semi-symmetric
metric connections, Bull. Korean Math. Soc. 52, 16311647, 2015.
- [21] X. Liu, On Ricci curvature of totally real submanifolds in a quaternion projective
space, Arch. Math. 38 (4), 297-305, 2002.
- [22] X. Liu and W. Dai, Ricci curvature of submanifolds in a quaternion projective space,
Commun. Korean Math. Soc. 17 (4), 625-633, 2002.
- [23] A. Mihai and C. Ozgur, Chen inequalities for submanifolds of real space forms with
a semi-symmetric metric connection, Taiwanese J. Math. 14, 1465-1477, 2010.
- [24] A. Mihai and C. Ozgur, Chen inequalities for submanifolds of complex space forms
and Sasakian space forms endowed with semi-symmetric metric connection, Rocky
Mountain J. Math., 41, 1653-1673, 2011.
- [25] I. Mihai, F.R. Al-Solamy and M.H. Shahid, On Ricci curvature of a quaternion CRsubmanifold
in a quaternion space form, Rad. Mat. 12 (1), 91-98, 2003.
- [26] Z. Nakao, Submanifolds of a Riemannian manifold with semi-symmetric metric connections,
Proc. Amer. Math. Soc. 54, 261-266, 1976.
- [27] T. Oprea, Optimization methods on Riemannian submanifolds, An. Univ. Bucuresti
Math. 54, 127-136, 2005.
- [28] M. Ozkan, Prolongations of golden structures to tangent bundles, Differential Geometry
- Dynamical Sytem. 16, 227-23, 2014.
- [29] N.O. Poyraz and Y. Erol, Lightlike Hypersurfaces of a Golden Semi-Riemannian Manifold,
Mediterr. J. Math. 14:204, DOI 10.1007/s00009-017-0999-2, 2017.
- [30] S.S. Shukla and P.K. Rao, Ricci curvature of quaternion slant submanifolds in quaternion
space forms, Acta Math. Acad. Paedagog. Nyházi 28 (1), 69-81, 2012.
- [31] A.N. Siddiqui, Upper bound inequalities for $\delta$-Casorati curvatures of submanifolds
in generalized Sasakian space forms admitting a semi-symmetric metric connection,
Inter. Elec. J. Geom. 11 (1), 57-67, 2018.
- [32] M.M. Tripathi, Inequalities for algebraic Casorati curvatures and their applications,
arXiv:1607.05828v1 [math.DG] 20 Jul 2016.
- [33] G.E. Vilcu, On Chen invariant and inequalities in quaternionic geometry, J. Inequal.
Appl. 2013, Article ID 66, 2013
- [34] K. Yano, On semi-symmetric metric connection, Rev. roumaine Math. Pure Appl.
15, 1579-1586, 1970.
- [35] P. Zhang, L. Zhang and W. Song, Inequalities for submanifolds of a Riemannian manifold
of quasi-constant curvature with a semi-symmetric metric connection, Taiwanese
J. Math. 18, 1841-1862, 2014.