Research Article
BibTex RIS Cite

Ricci bi-conformal vector fields on Lorentzian five-dimensional two-step nilpotent Lie groups

Year 2024, Volume: 53 Issue: 4, 1118 - 1129, 27.08.2024
https://doi.org/10.15672/hujms.1294973

Abstract

In this paper, we completely classify Ricci bi-conformal vector fields on simply-connected five-dimensional two-step nilpotent Lie groups which are also connected and we show which of them are the Killing vector fields and gradient vector fields.

References

  • [1] S. Azami, Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections, J. Nonlinear Math. Phys. 30 (1), 1-33, 2023.
  • [2] P. Baird and L. Danielo, Three-dimensional Ricci solitons whichproject to surfaces, J. Reine Angew. Math. 608, 65-91, 2007.
  • [3] W. Batat and K. Onda, Four-dimensional pseudo-Riemannian generalized symmetric spaces which are algebraic Ricci solitons, Results Math. 64, 253-267, 2013.
  • [4] N. Bokan, T. Sukilovic and S. Vukmirovic, Lorentz geometry of 4-dimensional nilpotent Lie groups, Geom. dedicata 177, 83-102, 2015.
  • [5] A. Bouharis and B. Djebbar, Ricci solitons on Lorentzian four-dimensional generalized symmetric spaces, J. Math. Phys. Anal. Geom. 14 (2), 132-140, 2018.
  • [6] G. Calvaruso, Three-dimensional homogeneous generalized Ricci solitons, Mediterr. J. Math. 14 (5), 1-21, 2017.
  • [7] S. M. Carroll, Spacetime and geometry: an introduction to general relativity, Addison Wesley., 133-139, 2004.
  • [8] B. Coll, S. R. Hldebrondt and J. M. M. Senovilla, Kerr-Schild symmetries, Gen. Relativ. Gravit. 33, 649-670, 2001.
  • [9] U. C. De, A. Sardar, and A. Sarkar, Some conformal vector fields and conformal Ricci solitons on $N(k)$-contact metric manifolds, AUT J. Math. Com. 2 (1), 61-71, 2021.
  • [10] S. Deshmukh, Geometry of conformal vector fields, Arab. J. Math. 23 (1), 44-73, 2017.
  • [11] A. Garcia-Parrado and J. M. M. Senovilla, Bi-conformal vector fields and their applications, Classical Quantum Gravity 21 (8), 2153-2177, 2004.
  • [12] R. S. Hamilton, The Ricci flow on surfaces in Mathematics and General Relativity, Contemps. Math. 71, Amer. Math. Soc. Providence, RI, 1988, 237-262.
  • [13] J. Lauret, Ricci solitons solvmanifolds, J. Reine Angew. Math. 650, 1-21, 2011.
  • [14] L. Magnin, Sue les algébres de Lie nilpotents de dimension$\leq7$, J. Geom. Phys. 3 (1), 119, 1986.
  • [15] P. Nurowski and M. Randall, Generalized Ricci solitons, J. Geom. Anal. 26, 1280- 1345, 2016.
  • [16] T. H. Wears, On Lorentzian Ricci solitons on nilpotent Lie groups, Math. Nachr. 290 (8-9), 1381-1405, 2017.
  • [17] K. Yano, The theory of Lie derivatives and its applications, Dover publications, 2020.
Year 2024, Volume: 53 Issue: 4, 1118 - 1129, 27.08.2024
https://doi.org/10.15672/hujms.1294973

Abstract

References

  • [1] S. Azami, Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections, J. Nonlinear Math. Phys. 30 (1), 1-33, 2023.
  • [2] P. Baird and L. Danielo, Three-dimensional Ricci solitons whichproject to surfaces, J. Reine Angew. Math. 608, 65-91, 2007.
  • [3] W. Batat and K. Onda, Four-dimensional pseudo-Riemannian generalized symmetric spaces which are algebraic Ricci solitons, Results Math. 64, 253-267, 2013.
  • [4] N. Bokan, T. Sukilovic and S. Vukmirovic, Lorentz geometry of 4-dimensional nilpotent Lie groups, Geom. dedicata 177, 83-102, 2015.
  • [5] A. Bouharis and B. Djebbar, Ricci solitons on Lorentzian four-dimensional generalized symmetric spaces, J. Math. Phys. Anal. Geom. 14 (2), 132-140, 2018.
  • [6] G. Calvaruso, Three-dimensional homogeneous generalized Ricci solitons, Mediterr. J. Math. 14 (5), 1-21, 2017.
  • [7] S. M. Carroll, Spacetime and geometry: an introduction to general relativity, Addison Wesley., 133-139, 2004.
  • [8] B. Coll, S. R. Hldebrondt and J. M. M. Senovilla, Kerr-Schild symmetries, Gen. Relativ. Gravit. 33, 649-670, 2001.
  • [9] U. C. De, A. Sardar, and A. Sarkar, Some conformal vector fields and conformal Ricci solitons on $N(k)$-contact metric manifolds, AUT J. Math. Com. 2 (1), 61-71, 2021.
  • [10] S. Deshmukh, Geometry of conformal vector fields, Arab. J. Math. 23 (1), 44-73, 2017.
  • [11] A. Garcia-Parrado and J. M. M. Senovilla, Bi-conformal vector fields and their applications, Classical Quantum Gravity 21 (8), 2153-2177, 2004.
  • [12] R. S. Hamilton, The Ricci flow on surfaces in Mathematics and General Relativity, Contemps. Math. 71, Amer. Math. Soc. Providence, RI, 1988, 237-262.
  • [13] J. Lauret, Ricci solitons solvmanifolds, J. Reine Angew. Math. 650, 1-21, 2011.
  • [14] L. Magnin, Sue les algébres de Lie nilpotents de dimension$\leq7$, J. Geom. Phys. 3 (1), 119, 1986.
  • [15] P. Nurowski and M. Randall, Generalized Ricci solitons, J. Geom. Anal. 26, 1280- 1345, 2016.
  • [16] T. H. Wears, On Lorentzian Ricci solitons on nilpotent Lie groups, Math. Nachr. 290 (8-9), 1381-1405, 2017.
  • [17] K. Yano, The theory of Lie derivatives and its applications, Dover publications, 2020.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Shahroud Azami 0000-0002-8976-2014

U.c. De 0000-0002-8990-4609

Early Pub Date January 10, 2024
Publication Date August 27, 2024
Published in Issue Year 2024 Volume: 53 Issue: 4

Cite

APA Azami, S., & De, U. (2024). Ricci bi-conformal vector fields on Lorentzian five-dimensional two-step nilpotent Lie groups. Hacettepe Journal of Mathematics and Statistics, 53(4), 1118-1129. https://doi.org/10.15672/hujms.1294973
AMA Azami S, De U. Ricci bi-conformal vector fields on Lorentzian five-dimensional two-step nilpotent Lie groups. Hacettepe Journal of Mathematics and Statistics. August 2024;53(4):1118-1129. doi:10.15672/hujms.1294973
Chicago Azami, Shahroud, and U.c. De. “Ricci Bi-Conformal Vector Fields on Lorentzian Five-Dimensional Two-Step Nilpotent Lie Groups”. Hacettepe Journal of Mathematics and Statistics 53, no. 4 (August 2024): 1118-29. https://doi.org/10.15672/hujms.1294973.
EndNote Azami S, De U (August 1, 2024) Ricci bi-conformal vector fields on Lorentzian five-dimensional two-step nilpotent Lie groups. Hacettepe Journal of Mathematics and Statistics 53 4 1118–1129.
IEEE S. Azami and U. De, “Ricci bi-conformal vector fields on Lorentzian five-dimensional two-step nilpotent Lie groups”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 4, pp. 1118–1129, 2024, doi: 10.15672/hujms.1294973.
ISNAD Azami, Shahroud - De, U.c. “Ricci Bi-Conformal Vector Fields on Lorentzian Five-Dimensional Two-Step Nilpotent Lie Groups”. Hacettepe Journal of Mathematics and Statistics 53/4 (August 2024), 1118-1129. https://doi.org/10.15672/hujms.1294973.
JAMA Azami S, De U. Ricci bi-conformal vector fields on Lorentzian five-dimensional two-step nilpotent Lie groups. Hacettepe Journal of Mathematics and Statistics. 2024;53:1118–1129.
MLA Azami, Shahroud and U.c. De. “Ricci Bi-Conformal Vector Fields on Lorentzian Five-Dimensional Two-Step Nilpotent Lie Groups”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 4, 2024, pp. 1118-29, doi:10.15672/hujms.1294973.
Vancouver Azami S, De U. Ricci bi-conformal vector fields on Lorentzian five-dimensional two-step nilpotent Lie groups. Hacettepe Journal of Mathematics and Statistics. 2024;53(4):1118-29.