Review
BibTex RIS Cite

An Overview on Proteomic Studies

Year 2020, Volume: 40 Issue: 1, 48 - 58, 01.01.2020

Abstract

Proteomics deals with the analysis, identification and functions of all proteins encoded by genes in the organism, tissue and cell under certain conditions. Today, it is known that not only genome analysis is sufficient in illuminating any biochemical process, but instead, a holistic evaluation including proteom analysis is rational. In this review study, an overview of the process starting from the first hypotheses about genes to proteomic studies today is presented.

References

  • 1. Horowitz, N., The one gene-one enzyme hypothesis. Genetics, 1948. 33(6): p. 612.
  • 2. Mishra, N.C., Introduction to proteomics: principles and applications. Vol. 148. 2011: John Wiley & Sons.
  • 3. Davis, R.H., Beadle’s progeny: Innocence rewarded, innocence lost. Journal of biosciences, 2007. 32(2): p. 197-205.
  • 4. Crawford, M.H., et al., The Human Genome Project. Human biology, 1990. 62(4): p. iii-v.
  • 5. Bentley, D.R., The human genome project—an overview. Medicinal research reviews, 2000. 20(3): p. 189-196.
  • 6. Çelebier, M., Ht29 Ve K562 Kanser Hücrelerinde Protein Ve Metabolitlerin Analizi Için Çeşitli Analitik Yöntemlerin Geliştirilmesi. 2013.
  • 7. Kennedy, M.A., What does the human genome project mean for medicine? New Zealand medical journal, 2001. 114(1130): p. 190.
  • 8. Lele, R., The human genome project: its implications in clinical medicine. JOURNAL-ASSOCIATION OF PHYSICIANS OF INDIA, 2003. 51: p. 373-381.
  • 9. Aldhous, P., Human Genome Project: Database Goes On-Line. Nature, 1990. 347(6288): p. 9.
  • 10. Roberts, L., Timeline: A History of the Human Genome Project. Science, 2001. 291(5507): p. 1195-1200. 11. Tyers, M. and M. Mann, From genomics to proteomics. Nature, 2003. 422(6928): p. 193. 12. Lottspeich, F., Introduction to proteomics, in Proteomics. 2009, Springer. p. 3-10. 13. Wasinger, V.C., et al., Progress with gene‐product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995. 16(1): p. 1090-1094. 14. Fields, S., Proteomics in genomeland. Science, 2001. 291(5507): p. 1221-1224. 15. Jung, J.-W. and W. Lee, Structure-based functional discovery of proteins: structural proteomics. Journal of biochemistry and molecular biology, 2004. 37(1): p. 28-34. 16. Renfrey, S. and J. Featherstone, Structural proteomics. 2002, Nature Publishing Group. 17. Monti, M., et al., Puzzle of protein complexes in vivo: a present and future challenge for functional proteomics. Expert review of proteomics, 2009. 6(2): p. 159-169. 18. Bíliková, K., et al., Towards functional proteomics of minority component of honeybee royal jelly: The effect of post‐translational modifications on the antimicrobial activity of apalbumin2. Proteomics, 2009. 9(8): p. 2131-2138.
  • 19. Tran, J.C., et al., Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature, 2011. 480(7376): p. 254.
  • 20. Link, A.J., et al., Direct analysis of protein complexes using mass spectrometry. Nature biotechnology, 1999. 17(7): p. 676.
  • 21. Wu, C., et al., A protease for'middle-down'proteomics. Nature methods, 2012. 9(8): p. 822.
  • 22. Taouatas, N., et al., Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase. Nature methods, 2008. 5(5): p. 405.
  • 23. Edman, P., A method for the determination of the amino acid sequence in peptides. Arch. Biochem., 1949. 22: p. 475-476.
  • 24. Guillonneau, F., et al., Selection and identification of proteins bound to DNA triple-helical structures by combination of 2D-electrophoresis and MALDI-TOF mass spectrometry. Nucleic acids research, 2001. 29(11): p. 2427-2436.
  • 25. MacArthur, M.W. and J.M. Thornton, Conformational analysis of protein structures derived from NMR data. Proteins: Structure, Function, and Bioinformatics, 1993. 17(3): p. 232-251.
  • 26. Ratnaparkhi, G.S., et al., Discrepancies between the NMR and X-ray structures of uncomplexed barstar: analysis suggests that packing densities of protein structures determined by NMR are unreliable. Biochemistry, 1998. 37(19): p. 6958-6966.
  • 27. Issaq, H.J., The role of separation science in proteomics research. Electrophoresis, 2001. 22(17): p. 3629-3638. 28. Lescuyer, P., D.F. Hochstrasser, and J.C. Sanchez, Comprehensive proteome analysis by chromatographic protein prefractionation. Electrophoresis, 2004. 25(7‐8): p. 1125-1135. 29. Ong, S.-E. and A. Pandey, An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomolecular engineering, 2001. 18(5): p. 195-205.
  • 30. Rabilloud, T., Two‐dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. PROTEOMICS: International Edition, 2002. 2(1): p. 3-10.
  • 31. Rabilloud, T., et al., Two-dimensional gel electrophoresis in proteomics: Past, present and future. Journal of proteomics, 2010. 73(11): p. 2064-2077.
  • 32. Wittmann‐Liebold, B., H.R. Graack, and T. Pohl, Two‐dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics, 2006. 6(17): p. 4688-4703.
  • 33. Tiselius, A., Electrophoresis of serum globulin: Electrophoretic analysis of normal and immune sera. Biochemical Journal, 1937. 31(9): p. 1464.
  • 34. Shaw, C.R. and R. Prasad, Starch gel electrophoresis of enzymes—a compilation of recipes. Biochemical Genetics, 1970. 4(2): p. 297-320.
  • 35. Kapiler Elektroforezin İlaç Analizlerine Uygulanması. 2018.
  • 36. Smithies, O. and M. Poulik, Two-dimensional electrophoresis of serum proteins. Nature, 1956. 177(4518): p. 1033.
  • 37. Ashton, G., Serum protein differences in cattle by starch gel electrophoresis. Nature, 1957. 180(4592): p. 917.
  • 38. Raymond, S., M. Nakamichi, and B. Aurell, Acrylamide gel as an electrophoresis medium. Nature, 1962. 195(4842): p. 697.
  • 39. Raymond, S., Acrylamide gel electrophoresis. Annals of the New York Academy of Sciences, 1964. 121(2): p. 350-365.
  • 40. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature, 1970. 227(5259): p. 680.
  • 41. Gronow, M. and G. Griffiths, Rapid isolation and separation of the non‐histone proteins of rat liver nuclei. Febs Letters, 1971. 15(5): p. 340-344.
  • 42. Klein, E., J.B. Klein, and V. Thongboonkerd, Two-dimensional gel electrophoresis: a fundamental tool for expression proteomics studies, in Proteomics in Nephrology. 2004, Karger Publishers. p. 25-39.
  • 43. SWISS-2DPAGE. 2020 20.04.2020]; Available from: https://world-2dpage.expasy.org/swiss-2dpage/.
  • 44. Hamdan, M.H. and P.G. Righetti, Proteomics today: protein assessment and biomarkers using mass spectrometry, 2D electrophoresis, and microarray technology. Vol. 18. 2005: John Wiley & Sons.
  • 45. Görg, A., W. Postel, and S. Günther, Two‐dimensional electrophoresis. The current state of two‐dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 1988. 9(9): p. 531-546.
  • 46. Regula, J.T., et al., Towards a two‐dimensional proteome map of Mycoplasma pneumoniae. ELECTROPHORESIS: An International Journal, 2000. 21(17): p. 3765-3780.
  • 47. Girault, H.H., Analytical and physical electrochemistry. 2004: EPFL press.
  • 48. Ek, K., B. Bjellqvist, and P.G. Righetti, Preparative isoelectric focusing in immobilized pH gradients. I. General principles and methodology. Journal of biochemical and biophysical methods, 1983. 8(2): p. 135-155.
  • 49. Suchkov, S., I. Nikol'skaia, and S. Debov, Isoelectric focusing of DNA-methylases from Shigella sonnei 47. Voprosy meditsinskoi khimii, 1983. 29(4): p. 117-122.
  • 50. Bjellqvist, B., et al., Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. Journal of biochemical and biophysical methods, 1982. 6(4): p. 317-339.
  • 51. O'Farrell, P.H., High resolution two-dimensional electrophoresis of proteins. Journal of biological chemistry, 1975. 250(10): p. 4007-4021.
  • 52. Harris, L.R., et al., Assessing detection methods for gel-based proteomic analyses. Journal of proteome research, 2007. 6(4): p. 1418-1425.
  • 53. Miller, I., J. Crawford, and E. Gianazza, Protein stains for proteomic applications: which, when, why? Proteomics, 2006. 6(20): p. 5385-5408.
  • 54. Penque, D., Two‐dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics–Clinical Applications, 2009. 3(2): p. 155-172.
  • 55. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p. 64-71.
  • 56. Cañas, B., et al., Mass spectrometry technologies for proteomics. Briefings in Functional Genomics, 2006. 4(4): p. 295-320.
  • 57. Chaurand, P., F. Luetzenkirchen, and B. Spengler, Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry, 1999. 10(2): p. 91-103.
  • 58. Gygi, S.P. and R. Aebersold, Mass spectrometry and proteomics. Current opinion in chemical biology, 2000. 4(5): p. 489-494.
  • 59. Pandey, A. and M. Mann, Proteomics to study genes and genomes. Nature, 2000. 405(6788): p. 837.
  • 60. Bull, P., et al., The transfer and persistence of trace particulates: experimental studies using clothing fabrics. Science and Justice, 2006. 46(3): p. 185-195.
  • 61. Matsudaira, P., Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. Journal of Biological Chemistry, 1987. 262(21): p. 10035-10038.
  • 62. Henzel, W.J., C. Watanabe, and J.T. Stults, Protein identification: the origins of peptide mass fingerprinting. Journal of the American Society for Mass Spectrometry, 2003. 14(9): p. 931-942.
  • 63. Matthiesen, R., Mass Spectrometry Data Analysis in Proteomics. Humana Press, Totowa, New Jersey.(ISBN 978‐1‐58829‐563‐7). Journal of Mass Spectrometry, 2007. 42(4): p. 545-545.
  • 64. Aebersold, R. and D.R. Goodlett, Mass spectrometry in proteomics. Chemical reviews, 2001. 101(2): p. 269-296.
  • 65. Matthiesen, R., Mass spectrometry data analysis in proteomics. Vol. 367. 2007: Springer.
  • 66. Vékey, K., A. Telekes, and A. Vertes, Mass spectrometry instrumentation and techniques. Medical Applications of Mass Spectrometry, 2008: p. 93.
  • 67. Roepstorff, P. and J. Fohlman, Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomedical mass spectrometry, 1984.
  • 68. Biemann, K., Contributions of mass spectrometry to peptide and protein structure. Biomedical & environmental mass spectrometry, 1988. 16(1-12): p. 99-111.
  • 69. De Novo Peptide Sequencing Tutorial. 2020 26.04.2020]; Available from: http://ionsource.com/tutorial/DeNovo/b_and_y.htm.
  • 70. Jain, K.K., Innovations, challenges and future prospects of oncoproteomics. Molecular oncology, 2008. 2(2): p. 153-160.
  • 71. Ibáñez, C., et al., Global Foodomics strategy to investigate the health benefits of dietary constituents. Journal of Chromatography A, 2012. 1248: p. 139-153.
  • 72. Ercan, A., et al., Global omics strategies to investigate the effect of cyclodextrin nanoparticles on MCF-7 breast cancer cells. European Journal of Pharmaceutical Sciences, 2018. 123: p. 377-386.

Proteomik Çalışmalara Genel Bakış

Year 2020, Volume: 40 Issue: 1, 48 - 58, 01.01.2020

Abstract

Proteomik; belirli şartlarda organizmada, dokuda ve hücre içerisinde genler tarafından kodlanan tüm proteinlerin analizi, tanımlanması ve fonksiyonlarıyla ilgilenir. Günümüzde herhangi bir biyokimyasal sürecin aydınlatılmasında yalnızca genom analizinin yeterli olmadığı ve bunun yerine proteom analizlerini de içine alan bütünsel bir değerlendirmenin akılcı olduğu bilinmektedir. Bu derleme çalışmasında, genlerle ilgili ortaya atılan ilk hipotezlerden başlayıp günümüzdeki proteomik çalışmalara kadar gelişen süreç üzerine genel bir bakış sunulmaktadır.

References

  • 1. Horowitz, N., The one gene-one enzyme hypothesis. Genetics, 1948. 33(6): p. 612.
  • 2. Mishra, N.C., Introduction to proteomics: principles and applications. Vol. 148. 2011: John Wiley & Sons.
  • 3. Davis, R.H., Beadle’s progeny: Innocence rewarded, innocence lost. Journal of biosciences, 2007. 32(2): p. 197-205.
  • 4. Crawford, M.H., et al., The Human Genome Project. Human biology, 1990. 62(4): p. iii-v.
  • 5. Bentley, D.R., The human genome project—an overview. Medicinal research reviews, 2000. 20(3): p. 189-196.
  • 6. Çelebier, M., Ht29 Ve K562 Kanser Hücrelerinde Protein Ve Metabolitlerin Analizi Için Çeşitli Analitik Yöntemlerin Geliştirilmesi. 2013.
  • 7. Kennedy, M.A., What does the human genome project mean for medicine? New Zealand medical journal, 2001. 114(1130): p. 190.
  • 8. Lele, R., The human genome project: its implications in clinical medicine. JOURNAL-ASSOCIATION OF PHYSICIANS OF INDIA, 2003. 51: p. 373-381.
  • 9. Aldhous, P., Human Genome Project: Database Goes On-Line. Nature, 1990. 347(6288): p. 9.
  • 10. Roberts, L., Timeline: A History of the Human Genome Project. Science, 2001. 291(5507): p. 1195-1200. 11. Tyers, M. and M. Mann, From genomics to proteomics. Nature, 2003. 422(6928): p. 193. 12. Lottspeich, F., Introduction to proteomics, in Proteomics. 2009, Springer. p. 3-10. 13. Wasinger, V.C., et al., Progress with gene‐product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995. 16(1): p. 1090-1094. 14. Fields, S., Proteomics in genomeland. Science, 2001. 291(5507): p. 1221-1224. 15. Jung, J.-W. and W. Lee, Structure-based functional discovery of proteins: structural proteomics. Journal of biochemistry and molecular biology, 2004. 37(1): p. 28-34. 16. Renfrey, S. and J. Featherstone, Structural proteomics. 2002, Nature Publishing Group. 17. Monti, M., et al., Puzzle of protein complexes in vivo: a present and future challenge for functional proteomics. Expert review of proteomics, 2009. 6(2): p. 159-169. 18. Bíliková, K., et al., Towards functional proteomics of minority component of honeybee royal jelly: The effect of post‐translational modifications on the antimicrobial activity of apalbumin2. Proteomics, 2009. 9(8): p. 2131-2138.
  • 19. Tran, J.C., et al., Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature, 2011. 480(7376): p. 254.
  • 20. Link, A.J., et al., Direct analysis of protein complexes using mass spectrometry. Nature biotechnology, 1999. 17(7): p. 676.
  • 21. Wu, C., et al., A protease for'middle-down'proteomics. Nature methods, 2012. 9(8): p. 822.
  • 22. Taouatas, N., et al., Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase. Nature methods, 2008. 5(5): p. 405.
  • 23. Edman, P., A method for the determination of the amino acid sequence in peptides. Arch. Biochem., 1949. 22: p. 475-476.
  • 24. Guillonneau, F., et al., Selection and identification of proteins bound to DNA triple-helical structures by combination of 2D-electrophoresis and MALDI-TOF mass spectrometry. Nucleic acids research, 2001. 29(11): p. 2427-2436.
  • 25. MacArthur, M.W. and J.M. Thornton, Conformational analysis of protein structures derived from NMR data. Proteins: Structure, Function, and Bioinformatics, 1993. 17(3): p. 232-251.
  • 26. Ratnaparkhi, G.S., et al., Discrepancies between the NMR and X-ray structures of uncomplexed barstar: analysis suggests that packing densities of protein structures determined by NMR are unreliable. Biochemistry, 1998. 37(19): p. 6958-6966.
  • 27. Issaq, H.J., The role of separation science in proteomics research. Electrophoresis, 2001. 22(17): p. 3629-3638. 28. Lescuyer, P., D.F. Hochstrasser, and J.C. Sanchez, Comprehensive proteome analysis by chromatographic protein prefractionation. Electrophoresis, 2004. 25(7‐8): p. 1125-1135. 29. Ong, S.-E. and A. Pandey, An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomolecular engineering, 2001. 18(5): p. 195-205.
  • 30. Rabilloud, T., Two‐dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. PROTEOMICS: International Edition, 2002. 2(1): p. 3-10.
  • 31. Rabilloud, T., et al., Two-dimensional gel electrophoresis in proteomics: Past, present and future. Journal of proteomics, 2010. 73(11): p. 2064-2077.
  • 32. Wittmann‐Liebold, B., H.R. Graack, and T. Pohl, Two‐dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics, 2006. 6(17): p. 4688-4703.
  • 33. Tiselius, A., Electrophoresis of serum globulin: Electrophoretic analysis of normal and immune sera. Biochemical Journal, 1937. 31(9): p. 1464.
  • 34. Shaw, C.R. and R. Prasad, Starch gel electrophoresis of enzymes—a compilation of recipes. Biochemical Genetics, 1970. 4(2): p. 297-320.
  • 35. Kapiler Elektroforezin İlaç Analizlerine Uygulanması. 2018.
  • 36. Smithies, O. and M. Poulik, Two-dimensional electrophoresis of serum proteins. Nature, 1956. 177(4518): p. 1033.
  • 37. Ashton, G., Serum protein differences in cattle by starch gel electrophoresis. Nature, 1957. 180(4592): p. 917.
  • 38. Raymond, S., M. Nakamichi, and B. Aurell, Acrylamide gel as an electrophoresis medium. Nature, 1962. 195(4842): p. 697.
  • 39. Raymond, S., Acrylamide gel electrophoresis. Annals of the New York Academy of Sciences, 1964. 121(2): p. 350-365.
  • 40. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature, 1970. 227(5259): p. 680.
  • 41. Gronow, M. and G. Griffiths, Rapid isolation and separation of the non‐histone proteins of rat liver nuclei. Febs Letters, 1971. 15(5): p. 340-344.
  • 42. Klein, E., J.B. Klein, and V. Thongboonkerd, Two-dimensional gel electrophoresis: a fundamental tool for expression proteomics studies, in Proteomics in Nephrology. 2004, Karger Publishers. p. 25-39.
  • 43. SWISS-2DPAGE. 2020 20.04.2020]; Available from: https://world-2dpage.expasy.org/swiss-2dpage/.
  • 44. Hamdan, M.H. and P.G. Righetti, Proteomics today: protein assessment and biomarkers using mass spectrometry, 2D electrophoresis, and microarray technology. Vol. 18. 2005: John Wiley & Sons.
  • 45. Görg, A., W. Postel, and S. Günther, Two‐dimensional electrophoresis. The current state of two‐dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 1988. 9(9): p. 531-546.
  • 46. Regula, J.T., et al., Towards a two‐dimensional proteome map of Mycoplasma pneumoniae. ELECTROPHORESIS: An International Journal, 2000. 21(17): p. 3765-3780.
  • 47. Girault, H.H., Analytical and physical electrochemistry. 2004: EPFL press.
  • 48. Ek, K., B. Bjellqvist, and P.G. Righetti, Preparative isoelectric focusing in immobilized pH gradients. I. General principles and methodology. Journal of biochemical and biophysical methods, 1983. 8(2): p. 135-155.
  • 49. Suchkov, S., I. Nikol'skaia, and S. Debov, Isoelectric focusing of DNA-methylases from Shigella sonnei 47. Voprosy meditsinskoi khimii, 1983. 29(4): p. 117-122.
  • 50. Bjellqvist, B., et al., Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. Journal of biochemical and biophysical methods, 1982. 6(4): p. 317-339.
  • 51. O'Farrell, P.H., High resolution two-dimensional electrophoresis of proteins. Journal of biological chemistry, 1975. 250(10): p. 4007-4021.
  • 52. Harris, L.R., et al., Assessing detection methods for gel-based proteomic analyses. Journal of proteome research, 2007. 6(4): p. 1418-1425.
  • 53. Miller, I., J. Crawford, and E. Gianazza, Protein stains for proteomic applications: which, when, why? Proteomics, 2006. 6(20): p. 5385-5408.
  • 54. Penque, D., Two‐dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics–Clinical Applications, 2009. 3(2): p. 155-172.
  • 55. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p. 64-71.
  • 56. Cañas, B., et al., Mass spectrometry technologies for proteomics. Briefings in Functional Genomics, 2006. 4(4): p. 295-320.
  • 57. Chaurand, P., F. Luetzenkirchen, and B. Spengler, Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry, 1999. 10(2): p. 91-103.
  • 58. Gygi, S.P. and R. Aebersold, Mass spectrometry and proteomics. Current opinion in chemical biology, 2000. 4(5): p. 489-494.
  • 59. Pandey, A. and M. Mann, Proteomics to study genes and genomes. Nature, 2000. 405(6788): p. 837.
  • 60. Bull, P., et al., The transfer and persistence of trace particulates: experimental studies using clothing fabrics. Science and Justice, 2006. 46(3): p. 185-195.
  • 61. Matsudaira, P., Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. Journal of Biological Chemistry, 1987. 262(21): p. 10035-10038.
  • 62. Henzel, W.J., C. Watanabe, and J.T. Stults, Protein identification: the origins of peptide mass fingerprinting. Journal of the American Society for Mass Spectrometry, 2003. 14(9): p. 931-942.
  • 63. Matthiesen, R., Mass Spectrometry Data Analysis in Proteomics. Humana Press, Totowa, New Jersey.(ISBN 978‐1‐58829‐563‐7). Journal of Mass Spectrometry, 2007. 42(4): p. 545-545.
  • 64. Aebersold, R. and D.R. Goodlett, Mass spectrometry in proteomics. Chemical reviews, 2001. 101(2): p. 269-296.
  • 65. Matthiesen, R., Mass spectrometry data analysis in proteomics. Vol. 367. 2007: Springer.
  • 66. Vékey, K., A. Telekes, and A. Vertes, Mass spectrometry instrumentation and techniques. Medical Applications of Mass Spectrometry, 2008: p. 93.
  • 67. Roepstorff, P. and J. Fohlman, Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomedical mass spectrometry, 1984.
  • 68. Biemann, K., Contributions of mass spectrometry to peptide and protein structure. Biomedical & environmental mass spectrometry, 1988. 16(1-12): p. 99-111.
  • 69. De Novo Peptide Sequencing Tutorial. 2020 26.04.2020]; Available from: http://ionsource.com/tutorial/DeNovo/b_and_y.htm.
  • 70. Jain, K.K., Innovations, challenges and future prospects of oncoproteomics. Molecular oncology, 2008. 2(2): p. 153-160.
  • 71. Ibáñez, C., et al., Global Foodomics strategy to investigate the health benefits of dietary constituents. Journal of Chromatography A, 2012. 1248: p. 139-153.
  • 72. Ercan, A., et al., Global omics strategies to investigate the effect of cyclodextrin nanoparticles on MCF-7 breast cancer cells. European Journal of Pharmaceutical Sciences, 2018. 123: p. 377-386.
There are 62 citations in total.

Details

Primary Language Turkish
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Review Articles
Authors

Merve Nenni This is me 0000-0003-3165-1060

Mustafa Çelebier 0000-0001-7712-5512

İncilay Süslü 0000-0003-0809-2766

Publication Date January 1, 2020
Acceptance Date May 22, 2020
Published in Issue Year 2020 Volume: 40 Issue: 1

Cite

Vancouver Nenni M, Çelebier M, Süslü İ. Proteomik Çalışmalara Genel Bakış. HUJPHARM. 2020;40(1):48-5.