Migren Araştırmalarında Kullanılan Güncel Hayvan Modelleri
Year 2023,
Volume: 43 Issue: 4, 364 - 379, 01.12.2023
Melih Zeki Kaya
,
Sibel Bozdağ Pehlivan
,
Levent Öner
Abstract
Hayvan modelleri, insana zarar verme riski olmadan insanda görülen hastalıkların incelenmesinde ve yeni terapötik yaklaşımların geliştirilmesinde kullanılan önemli araştırma araçlarıdır. Hayvan modellerinde gözlenen biyolojik aktivite ile insanda elde edilen arasında her zaman birebir benzerlik olmasa da insan hastalıkları için birçok ilaç ve tedavi hayvan modellerinin rehberliğinde geliştirilmektedir. Bu kapsamda, son yıllarda baş ağrısı ve migren mekanizmalarını incelemek için hayvan modelleri yoğun bir şekilde geliştirilmiş ve bunun sonucu olarak migrenin anlaşılmasında ve anti migren tedavilerin geliştirilmesinde önemli adımlar atılmıştır. Bu modeller arasında, genetik modifikasyonlarla oluşturulan fare ve sıçan modelleri, trigeminal sinir sistemi aktivasyonunu taklit eden modeller ve inflamatuar ajanlarla baş ağrısı indüklenen modeller yer almaktadır. Her bir modelin kendine özgü üstünlük ve sınırlaması olduğundan, ilaç etkinliğini değerlendirmek için uygun hayvan modelinin seçimi ve sonuçların değerlendirilmesi için en uygun deneysel yöntemin seçimi kritik bir parametredir. Bu derlemede son yıllarda üzerinde yoğun bir biçimde çalışılan in-vivo migren modelleri ve bu modellerden elde edilen en son bulgular üzerinde tartışılacaktır
Supporting Institution
TÜBİTAK
Thanks
Melih Zeki Kaya TÜBİTAK 2244 programı kapsamında 118C131 kodlu projede bursiyer olarak görev almıştır.
References
- 1. Yildirim Ş, Akkoca Y, İNan LE. Migren ve Gerilim Tipi Baş
Ağrısında Bilişsel-Davranışçı Tedavinin Kullanımı. Bilişsel
Davranışçı Psikoterapi ve Araştırmalar Dergisi. 2015;4(1):10-7
- 2. Pietrobon D, Moskowitz MA. Pathophysiology of migraine.
Annu Rev Physiol. 2013;75:365-91.https://doi.org/10.1146/
annurev-physiol-030212-183717
- 3. Burstein R, Noseda R, Borsook D. Migraine: multiple processes,
complex pathophysiology. J Neurosci. 2015;35(17):6619-
29.https://doi.org/10.1523/jneurosci.0373-15.2015
- 4. Kissin I. Scientometrics of drug discovery efforts: pain-related
molecular targets. Drug Des Devel Ther. 2015;9:3393-404.
https://doi.org/10.2147/dddt.S85633
- 5. Thorlund K, Toor K, Wu P, Chan K, Druyts E, Ramos E, et
al. Comparative tolerability of treatments for acute migraine: A network meta-analysis. Cephalalgia. 2017;37(10):965-78.
https://doi.org/10.1177/0333102416660552
- 6. Chang DS, Hsu E, Hottinger DG, Cohen SP. Anti-nerve
growth factor in pain management: current evidence. J Pain
Res. 2016;9:373-83.https://doi.org/10.2147/jpr.S89061
- 7. Romero-Reyes M, Akerman S. Update on animal models of
migraine. Curr Pain Headache Rep. 2014;18(11):462.https://
doi.org/10.1007/s11916-014-0462-z
- 8. Létienne R, Verscheure Y, John GW. Investigation of the effects
of naratriptan, rizatriptan, and sumatriptan on jugular
venous oxygen saturation in anesthetized pigs: implications
for their mechanism of acute antimigraine action. J Pharmacol
Exp Ther. 2003;307(1):168-74.https://doi.org/10.1124/
jpet.103.054940
- 9. Drummond PD, Lance JW. Extracranial vascular changes
and the source of pain in migraine headache. Ann Neurol.
1983;13(1):32-7.https://doi.org/10.1002/ana.410130108
- 10. Friberg L, Olesen J, Iversen HK, Sperling B. Migraine pain
associated with middle cerebral artery dilatation: reversal
by sumatriptan. Lancet. 1991;338(8758):13-7.https://doi.
org/10.1016/0140-6736(91)90005-a
- 11. De Vries P, Villalón CM, Saxena PR. Pharmacological aspects
of experimental headache models in relation to acute antimigraine
therapy. Eur J Pharmacol. 1999;375(1-3):61-74.https://
doi.org/10.1016/s0014-2999(99)00197-1
- 12. Edvinsson L. Blockade of CGRP receptors in the intracranial
vasculature: a new target in the treatment of headache. Cephalalgia.
2004;24(8):611-22.https://doi.org/10.1111/j.1468-
2982.2003.00719.x
- 13. Den Boer MO, Van Woerkens LJ, Somers JA, Duncker DJ,
Lachmann B, Saxena PR, et al. On the preservation and regulation
of vascular tone in arteriovenous anastomoses during
anesthesia. J Appl Physiol (1985). 1993;75(2):782-9.https://
doi.org/10.1152/jappl.1993.75.2.782
- 14. Kapoor K, Arulmani U, Heiligers JP, Garrelds IM, Willems
EW, Doods H, et al. Effects of the CGRP receptor antagonist
BIBN4096BS on capsaicin-induced carotid haemodynamic
changes in anaesthetised pigs. Br J Pharmacol.
2003;140(2):329-38.https://doi.org/10.1038/sj.bjp.0705451
- 15. Akerman S, Holland PR, Hoffmann J. Pearls and pitfalls in
experimental in vivo models of migraine: dural trigeminovascular
nociception. Cephalalgia. 2013;33(8):577-92.https://doi.
org/10.1177/0333102412472071
- 16. Knyihár-Csillik E, Tajti J, Samsam M, Sáry G, Slezák S, Vécsei
L. Effect of a serotonin agonist (sumatriptan) on the peptidergic
innervation of the rat cerebral dura mater and on the expression
of c-fos in the caudal trigeminal nucleus in an experimental
migraine model. J Neurosci Res. 1997;48(5):449-64
- 17. Buzzi MG, Carter WB, Shimizu T, Heath H, 3rd, Moskowitz
MA. Dihydroergotamine and sumatriptan attenuate levels of
CGRP in plasma in rat superior sagittal sinus during electrical
stimulation of the trigeminal ganglion. Neuropharmacology.
1991;30(11):1193-200.https://doi.org/10.1016/0028-
3908(91)90165-8
- 18. Zagami AS, Goadsby PJ, Edvinsson L. Stimulation of the
superior sagittal sinus in the cat causes release of vasoactive
peptides. Neuropeptides. 1990;16(2):69-75.https://doi.
org/10.1016/0143-4179(90)90114-e
- 19. Robert C, Bourgeais L, Arreto CD, Condes-Lara M, Noseda
R, Jay T, et al. Paraventricular hypothalamic regulation of
trigeminovascular mechanisms involved in headaches. J Neurosci.
2013;33(20):8827-40.https://doi.org/10.1523/jneurosci.
0439-13.2013
- 20. Holland PR, Akerman S, Andreou AP, Karsan N, Wemmie JA,
Goadsby PJ. Acid-sensing ion channel 1: a novel therapeutic
target for migraine with aura. Ann Neurol. 2012;72(4):559-63.
https://doi.org/10.1002/ana.23653
- 21. Vila-Pueyo M, Strother LC, Kefel M, Goadsby PJ, Holland
PR. Divergent influences of the locus coeruleus on migraine
pathophysiology. Pain. 2019;160(2):385-94.https://doi.
org/10.1097/j.pain.0000000000001421
- 22. Knight YE, Classey JD, Lasalandra MP, Akerman S, Kowacs
F, Hoskin KL, et al. Patterns of fos expression in the rostral
medulla and caudal pons evoked by noxious craniovascular
stimulation and periaqueductal gray stimulation in the cat.
Brain Res. 2005;1045(1-2):1-11.https://doi.org/10.1016/j.brainres.
2005.01.091
- 23. Akerman S, Karsan N, Bose P, Hoffmann JR, Holland PR, Romero-
Reyes M, et al. Nitroglycerine triggers triptan-responsive
cranial allodynia and trigeminal neuronal hypersensitivity.
Brain. 2019;142(1):103-19.https://doi.org/10.1093/brain/
awy313
- 24. Summ O, Charbit AR, Andreou AP, Goadsby PJ. Modulation
of nocioceptive transmission with calcitonin gene-related
peptide receptor antagonists in the thalamus. Brain.
2010;133(9):2540-8.https://doi.org/10.1093/brain/awq224
- 25. Akerman S, Goadsby PJ. Neuronal PAC1 receptors mediate
delayed activation and sensitization of trigeminocervical
neurons: Relevance to migraine. Sci Transl Med.
2015;7(308):308ra157.https://doi.org/10.1126/scitranslmed.
aaa7557
- 26. Ramachandran R, Bhatt DK, Ploug KB, Olesen J, Jansen-Olesen
I, Hay-Schmidt A, et al. A naturalistic glyceryl trinitrate infusion
migraine model in the rat. Cephalalgia. 2012;32(1):73-
84.https://doi.org/10.1177/0333102411430855
- 27. Pedersen SH, Ramachandran R, Amrutkar DV, Petersen S, Olesen
J, Jansen-Olesen I. Mechanisms of glyceryl trinitrate provoked mast cell degranulation. Cephalalgia. 2015;35(14):1287-
97.https://doi.org/10.1177/0333102415574846
- 28. Hougaard Pedersen S, Maretty L, Ramachandran R, Sibbesen
JA, Yakimov V, Elgaard-Christensen R, et al. RNA Sequencing
of Trigeminal Ganglia in Rattus Norvegicus after
Glyceryl Trinitrate Infusion with Relevance to Migraine.
PLoS One. 2016;11(5):e0155039.https://doi.org/10.1371/journal.
pone.0155039
- 29. Ford AP. In pursuit of P2X3 antagonists: novel therapeutics
for chronic pain and afferent sensitization. Purinergic Signal.
2012;8(Suppl 1):3-26.https://doi.org/10.1007/s11302-011-
9271-6
- 30. Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ,
Charles A. Characterization of a novel model of chronic
migraine. Pain. 2014;155(2):269-74.https://doi.org/10.1016/j.
pain.2013.10.004
- 31. Ferrari LF, Levine JD, Green PG. Mechanisms mediating
nitroglycerin-induced delayed-onset hyperalgesia in the rat.
Neuroscience. 2016;317:121-9.https://doi.org/10.1016/j.neuroscience.
2016.01.005
- 32. McGuinness BW, Harris EL. “Monday head”: an interesting
occupational disorder. Br Med J. 1961;2(5254):745-7.https://
doi.org/10.1136/bmj.2.5254.745
- 33. Guo S, Olesen J, Ashina M. Phosphodiesterase 3 inhibitor cilostazol
induces migraine-like attacks via cyclic AMP increase.
Brain. 2014;137(Pt 11):2951-9.https://doi.org/10.1093/brain/
awu244
- 34. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby
PJ. Brain activations in the premonitory phase of nitroglycerin-
triggered migraine attacks. Brain. 2014;137(Pt 1):232-41.
https://doi.org/10.1093/brain/awt320
- 35. Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum
AI, et al. Sumatriptan alleviates nitroglycerin-induced
mechanical and thermal allodynia in mice. Cephalalgia.
2010;30(2):170-8.https://doi.org/10.1111/j.1468-
2982.2009.01864.x
- 36. Brennan KC, Bates EA, Shapiro RE, Zyuzin J, Hallows
WC, Huang Y, et al. Casein kinase iδ mutations in familial
migraine and advanced sleep phase. Sci Transl Med.
2013;5(183):183ra56, 1-11.https://doi.org/10.1126/scitranslmed.
3005784
- 37. De Logu F, Landini L, Janal MN, Li Puma S, De Cesaris F,
Geppetti P, et al. Migraine-provoking substances evoke periorbital
allodynia in mice. J Headache Pain. 2019;20(1):18.
https://doi.org/10.1186/s10194-019-0968-1
- 38. Cui Y, Toyoda H, Sako T, Onoe K, Hayashinaka E, Wada Y, et
al. A voxel-based analysis of brain activity in high-order trigeminal
pathway in the rat induced by cortical spreading depression.
Neuroimage. 2015;108:17-22.https://doi.org/10.1016/j.
neuroimage.2014.12.047
- 39. Cui Y, Takashima T, Takashima-Hirano M, Wada Y, Shukuri
M, Tamura Y, et al. 11C-PK11195 PET for the in vivo evaluation
of neuroinflammation in the rat brain after cortical spreading
depression. J Nucl Med. 2009;50(11):1904-11.https://doi.
org/10.2967/jnumed.109.066498
- 40. Ji RR, Chamessian A, Zhang YQ. Pain regulation by nonneuronal
cells and inflammation. Science. 2016;354(6312):572-
7.https://doi.org/10.1126/science.aaf8924
- 41. Spong KE, Rodríguez EC, Robertson RM. Spreading depolarization
in the brain of Drosophila is induced by inhibition of
the Na+/K+-ATPase and mitigated by a decrease in activity
of protein kinase G. J Neurophysiol. 2016;116(3):1152-60.
https://doi.org/10.1152/jn.00353.2016
- 42. Haerter K, Ayata C, Moskowitz MA. Cortical Spreading
Depression: A Model for Understanding Migraine Biology
and Future Drug Targets. Headache Currents. 2005;2(5):97-
103.https://doi.org/https://doi.org/10.1111/j.1743-
5013.2005.00017.x
- 43. Biosa G, Bastianoni S, Rustici M. Chemical waves. Chemistry.
2006;12(13):3430-7.https://doi.org/10.1002/chem.200500929
- 44. Kunkler PE, Hulse RE, Schmitt MW, Nicholson C, Kraig RP.
Optical current source density analysis in hippocampal organotypic
culture shows that spreading depression occurs with
uniquely reversing currents. J Neurosci. 2005;25(15):3952-61.
https://doi.org/10.1523/jneurosci.0491-05.2005
- 45. Gursoy-Ozdemir Y, Qiu J, Matsuoka N, Bolay H, Bermpohl D,
Jin H, et al. Cortical spreading depression activates and upregulates
MMP-9. J Clin Invest. 2004;113(10):1447-55.https://
doi.org/10.1172/jci21227
- 46. Moskowitz MA. Genes, proteases, cortical spreading depression
and migraine: impact on pathophysiology and treatment.
Funct Neurol. 2007;22(3):133-6
- 47. Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading
depression provokes the expression of c-fos protein-like immunoreactivity
within trigeminal nucleus caudalis via trigeminovascular
mechanisms. J Neurosci. 1993;13(3):1167-77.
https://doi.org/10.1523/jneurosci.13-03-01167.1993
- 48. Liu CH, You Z, Ren J, Kim YR, Eikermann-Haerter K, Liu PK.
Noninvasive delivery of gene targeting probes to live brains
for transcription MRI. Faseb j. 2008;22(4):1193-203.https://
doi.org/10.1096/fj.07-9557com
- 49. Ayata C, Jin H, Kudo C, Dalkara T, Moskowitz MA. Suppression
of cortical spreading depression in migraine prophylaxis.
Ann Neurol. 2006;59(4):652-61.https://doi.org/10.1002/
ana.20778
- 50. Lauritzen M. Pathophysiology of the migraine aura. The
spreading depression theory. Brain. 1994;117 ( Pt 1):199-210.
https://doi.org/10.1093/brain/117.1.199
- 51. Kleeberg J, Petzold GC, Major S, Dirnagl U, Dreier JP. ET-1
induces cortical spreading depression via activation of the
ETA receptor/phospholipase C pathway in vivo. Am J Physiol
Heart Circ Physiol. 2004;286(4):H1339-46.https://doi.
org/10.1152/ajpheart.00227.2003
- 52. Otori T, Greenberg JH, Welsh FA. Cortical spreading depression
causes a long-lasting decrease in cerebral blood flow
and induces tolerance to permanent focal ischemia in rat brain.
J Cereb Blood Flow Metab. 2003;23(1):43-50.https://doi.
org/10.1097/01.Wcb.0000035180.38851.38
- 53. Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker
D, Fischl B, et al. Mechanisms of migraine aura revealed
by functional MRI in human visual cortex. Proc Natl Acad
Sci U S A. 2001;98(8):4687-92.https://doi.org/10.1073/
pnas.071582498
- 54. Fabricius M, Fuhr S, Bhatia R, Boutelle M, Hashemi P, Strong
AJ, et al. Cortical spreading depression and peri-infarct depolarization
in acutely injured human cerebral cortex. Brain.
2006;129(Pt 3):778-90.https://doi.org/10.1093/brain/awh716
- 55. Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, Ouaknine
GE. Cortical spreading depression recorded from the
human brain using a multiparametric monitoring system. Brain
Res. 1996;740(1-2):268-74.https://doi.org/10.1016/s0006-
8993(96)00874-8
- 56. Milner PM. Note on a possible correspondence between the
scotomas of migraine and spreading depression of Leão. Electroencephalogr
Clin Neurophysiol. 1958;10(4):705.https://doi.
org/10.1016/0013-4694(58)90073-7
- 57. Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed
by spreading oligemia and impaired activation of rCBF in
classic migraine. Ann Neurol. 1981;9(4):344-52.https://doi.
org/10.1002/ana.410090406
- 58. Lauritzen M, Skyhøj Olsen T, Lassen NA, Paulson OB. Changes
in regional cerebral blood flow during the course of classic
migraine attacks. Ann Neurol. 1983;13(6):633-41.https://doi.
org/10.1002/ana.410130609
- 59. PENFIELD W, McNAUGHTON F. DURAL HEADACHE
AND INNERVATION OF THE DURA MATER. Archives
of Neurology & Psychiatry. 1940;44(1):43-75.https://doi.
org/10.1001/archneurpsyc.1940.02280070051003
- 60. Amin FM, Asghar MS, Hougaard A, Hansen AE, Larsen VA,
de Koning PJ, et al. Magnetic resonance angiography of intracranial
and extracranial arteries in patients with spontaneous
migraine without aura: a cross-sectional study. Lancet
Neurol. 2013;12(5):454-61.https://doi.org/10.1016/s1474-
4422(13)70067-x
- 61. May A, Goadsby PJ. The trigeminovascular system in humans:
pathophysiologic implications for primary headache
syndromes of the neural influences on the cerebral circulation.
J Cereb Blood Flow Metab. 1999;19(2):115-27.https://doi.
org/10.1097/00004647-199902000-00001
- 62. Akerman S, Holland PR, Goadsby PJ. Diencephalic and
brainstem mechanisms in migraine. Nat Rev Neurosci.
2011;12(10):570-84.https://doi.org/10.1038/nrn3057
- 63. Holland PR, Akerman S, Goadsby PJ. Modulation of nociceptive
dural input to the trigeminal nucleus caudalis
via activation of the orexin 1 receptor in the rat. Eur J Neurosci.
2006;24(10):2825-33.https://doi.org/10.1111/j.1460-
9568.2006.05168.x
- 64. Liu Y, Broman J, Edvinsson L. Central projections of the
sensory innervation of the rat middle meningeal artery. Brain
Res. 2008;1208:103-10.https://doi.org/10.1016/j.brainres.
2008.02.078
- 65. Melo-Carrillo A, Strassman AM, Nir RR, Schain AJ, Noseda
R, Stratton J, et al. Fremanezumab-A Humanized Monoclonal
Anti-CGRP Antibody-Inhibits Thinly Myelinated (Aδ)
But Not Unmyelinated (C) Meningeal Nociceptors. J Neurosci.
2017;37(44):10587-96.https://doi.org/10.1523/jneurosci.
2211-17.2017
- 66. Hu J, Milenkovic N, Lewin GR. The high threshold mechanotransducer:
a status report. Pain. 2006;120(1-2):3-7.https://doi.
org/10.1016/j.pain.2005.11.002
- 67. Charbit AR, Akerman S, Goadsby PJ. Trigeminocervical
complex responses after lesioning dopaminergic A11
nucleus are modified by dopamine and serotonin mechanisms.
Pain. 2011;152(10):2365-76.https://doi.org/10.1016/j.
pain.2011.07.002
- 68. Pozo-Rosich P, Storer RJ, Charbit AR, Goadsby PJ. Periaqueductal
gray calcitonin gene-related peptide modulates trigeminovascular
neurons. Cephalalgia. 2015;35(14):1298-307.
https://doi.org/10.1177/0333102415576723
- 69. Noseda R, Bernstein CA, Nir RR, Lee AJ, Fulton AB, Bertisch
SM, et al. Migraine photophobia originating in cone-driven
retinal pathways. Brain. 2016;139(Pt 7):1971-86.https://doi.
org/10.1093/brain/aww119
- 70. Bloom FE. To spritz or not to spritz: the doubtful value of aimless
iontophoresis. Life Sci. 1974;14(10):1819-34.https://doi.
org/10.1016/0024-3205(74)90400-7
- 71. Donaldson C, Boers PM, Hoskin KL, Zagami AS, Lambert
GA. The role of 5-HT1B and 5-HT1D receptors in the selective
inhibitory effect of naratriptan on trigeminovascular
neurons. Neuropharmacology. 2002;42(3):374-85.https://doi.
org/10.1016/s0028-3908(01)00190-3
- 72. Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related
peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol. 2004;142(7):1171-81.
https://doi.org/10.1038/sj.bjp.0705807
- 73. Shields KG, Goadsby PJ. Serotonin receptors modulate trigeminovascular
responses in ventroposteromedial nucleus of
thalamus: a migraine target? Neurobiol Dis. 2006;23(3):491-
501.https://doi.org/10.1016/j.nbd.2006.04.003
- 74. Thankachan S, Katsuki F, McKenna JT, Yang C, Shukla C,
Deisseroth K, et al. Thalamic Reticular Nucleus Parvalbumin
Neurons Regulate Sleep Spindles and Electrophysiological
Aspects of Schizophrenia in Mice. Sci Rep. 2019;9(1):3607.
https://doi.org/10.1038/s41598-019-40398-9
- 75. Bullitt E. Expression of c-fos-like protein as a marker for
neuronal activity following noxious stimulation in the rat. J
Comp Neurol. 1990;296(4):517-30.https://doi.org/10.1002/
cne.902960402
- 76. Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M. The
c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription
of AP-1 responsive genes. Cell. 1988;54(4):541-52.
https://doi.org/10.1016/0092-8674(88)90076-1
- 77. Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV.
Immediate Early Genes, Memory and Psychiatric Disorders:
Focus on c-Fos, Egr1 and Arc. Front Behav Neurosci.
2018;12:79.https://doi.org/10.3389/fnbeh.2018.00079
- 78. Coggeshall RE. Fos, nociception and the dorsal horn. Prog
Neurobiol. 2005;77(5):299-352.https://doi.org/10.1016/j.pneurobio.
2005.11.002
- 79. Sundquist SJ, Nisenbaum LK. Fast Fos: rapid protocols for single-
and double-labeling c-Fos immunohistochemistry in fresh
frozen brain sections. J Neurosci Methods. 2005;141(1):9-20.
https://doi.org/10.1016/j.jneumeth.2004.05.007
- 80. Morgan JI, Curran T. Calcium as a modulator of the immediate-
early gene cascade in neurons. Cell Calcium. 1988;9(5-
6):303-11.https://doi.org/10.1016/0143-4160(88)90011-5
- 81. Harris JA. Using c-fos as a neural marker of pain. Brain
Res Bull. 1998;45(1):1-8.https://doi.org/10.1016/s0361-
9230(97)00277-3
- 82. Bergerot A, Holland PR, Akerman S, Bartsch T, Ahn AH,
MaassenVanDenBrink A, et al. Animal models of migraine:
looking at the component parts of a complex disorder. Eur J
Neurosci. 2006;24(6):1517-34.https://doi.org/10.1111/j.1460-
9568.2006.05036.x
- 83. Hoskin KL, Bulmer DC, Goadsby PJ. Fos expression in the
trigeminocervical complex of the cat after stimulation of
the superior sagittal sinus is reduced by L-NAME. Neurosci
Lett. 1999;266(3):173-6.https://doi.org/10.1016/s0304-
3940(99)00281-5
- 84. Tassorelli C, Joseph SA. Systemic nitroglycerin induces
Fos immunoreactivity in brainstem and forebrain structures
of the rat. Brain Res. 1995;682(1-2):167-81.https://doi.
org/10.1016/0006-8993(95)00348-t
- 85. May A, Goadsby PJ. Substance P receptor antagonists
in the therapy of migraine. Expert Opin Investig Drugs.
2001;10(4):673-8.https://doi.org/10.1517/13543784.10.4.673
- 86. Shepheard SL, Williamson DJ, Williams J, Hill RG, Hargreaves
RJ. Comparison of the effects of sumatriptan and the NK1
antagonist CP-99,994 on plasma extravasation in Dura mater
and c-fos mRNA expression in trigeminal nucleus caudalis
of rats. Neuropharmacology. 1995;34(3):255-61.https://doi.
org/10.1016/0028-3908(94)00153-j
- 87. Hunt SP, Pini A, Evan G. Induction of c-fos-like protein in
spinal cord neurons following sensory stimulation. Nature.
1987;328(6131):632-4.https://doi.org/10.1038/328632a0
- 88. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated
protein kinase: conservation of a three-kinase module
from yeast to human. Physiol Rev. 1999;79(1):143-80.https://
doi.org/10.1152/physrev.1999.79.1.143
- 89. Martins-Oliveira M, Akerman S, Holland PR, Hoffmann JR,
Tavares I, Goadsby PJ. Neuroendocrine signaling modulates
specific neural networks relevant to migraine. Neurobiol Dis.
2017;101:16-26.https://doi.org/10.1016/j.nbd.2017.01.005
- 90. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh
TL. Quantitative assessment of tactile allodynia in the rat
paw. J Neurosci Methods. 1994;53(1):55-63.https://doi.
org/10.1016/0165-0270(94)90144-9
- 91. Minett MS, Quick K, Wood JN. Behavioral Measures of Pain
Thresholds. Curr Protoc Mouse Biol. 2011;1(3):383-412.
https://doi.org/10.1002/9780470942390.mo110116
- 92. Hansen JM, Thomsen LL, Olesen J, Ashina M. Familial
hemiplegic migraine type 1 shows no hypersensitivity to
nitric oxide. Cephalalgia. 2008;28(5):496-505.https://doi.
org/10.1111/j.1468-2982.2008.01559.x
- 93. Farajdokht F, Mohaddes G, Shanehbandi D, Karimi P, Babri
S. Ghrelin attenuated hyperalgesia induced by chronic
nitroglycerin: CGRP and TRPV1 as targets for migraine
management. Cephalalgia. 2018;38(11):1716-30.https://doi.
org/10.1177/0333102417748563
- 94. Ben Aissa M, Tipton AF, Bertels Z, Gandhi R, Moye LS, Novack
M, et al. Soluble guanylyl cyclase is a critical regulator
of migraine-associated pain. Cephalalgia. 2018;38(8):1471-
84.https://doi.org/10.1177/0333102417737778
- 95. Edelmayer RM, Vanderah TW, Majuta L, Zhang ET, Fioravanti
B, De Felice M, et al. Medullary pain facilitating neurons
mediate allodynia in headache-related pain. Ann Neurol.
2009;65(2):184-93.https://doi.org/10.1002/ana.21537
- 96. Fioravanti B, Kasasbeh A, Edelmayer R, Skinner DP, Jr., Hartings
JA, Burklund RD, et al. Evaluation of cutaneous allodynia following induction of cortical spreading depression in freely
moving rats. Cephalalgia. 2011;31(10):1090-100.https://
doi.org/10.1177/0333102411410609
- 97. Filiz A, Tepe N, Eftekhari S, Boran HE, Dilekoz E, Edvinsson
L, et al. CGRP receptor antagonist MK-8825
attenuates cortical spreading depression induced pain
behavior. Cephalalgia. 2019;39(3):354-65.https://doi.
org/10.1177/0333102417735845
- 98. Colburn RW, Lubin ML, Stone DJ, Jr., Wang Y, Lawrence
D, D’Andrea MR, et al. Attenuated cold sensitivity in
TRPM8 null mice. Neuron. 2007;54(3):379-86.https://doi.
org/10.1016/j.neuron.2007.04.017
- 99. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new
and sensitive method for measuring thermal nociception in
cutaneous hyperalgesia. Pain. 1988;32(1):77-88.https://doi.
org/10.1016/0304-3959(88)90026-7
- 100. Anderson EM, Mills R, Nolan TA, Jenkins AC, Mustafa G,
Lloyd C, et al. Use of the Operant Orofacial Pain Assessment
Device (OPAD) to measure changes in nociceptive behavior. J
Vis Exp. 2013(76):e50336.https://doi.org/10.3791/50336
Current Animal Models Used in Migraine Research
Year 2023,
Volume: 43 Issue: 4, 364 - 379, 01.12.2023
Melih Zeki Kaya
,
Sibel Bozdağ Pehlivan
,
Levent Öner
Abstract
Animal models are important research tools used in the study of human diseases and in the development of new therapeutic approaches without the risk of harming humans. Although there is not always one-to-one similarity between the biological activity observed in animal models and that obtained in humans, many drugs and treatments for human diseases are developed under the guidance of animal models. In this context, animal models have been extensively developed in recent years to examine the mechanisms of headache and migraine, and as a result, important steps have been taken in the understanding of migraine and the development of anti-migraine treatments. These models include mouse and rat models created by genetic modifications, models that mimic trigeminal nervous system activation, and models that induce headaches with inflammatory agents. Since each model has its own advantages and limitations, the selection of the appropriate animal model to evaluate drug efficacy and the most appropriate experimental method to evaluate the results is a critical parameter. In this review, in-vivo migraine models that have been studied extensively in recent years and the latest findings from these models will be discussed.
References
- 1. Yildirim Ş, Akkoca Y, İNan LE. Migren ve Gerilim Tipi Baş
Ağrısında Bilişsel-Davranışçı Tedavinin Kullanımı. Bilişsel
Davranışçı Psikoterapi ve Araştırmalar Dergisi. 2015;4(1):10-7
- 2. Pietrobon D, Moskowitz MA. Pathophysiology of migraine.
Annu Rev Physiol. 2013;75:365-91.https://doi.org/10.1146/
annurev-physiol-030212-183717
- 3. Burstein R, Noseda R, Borsook D. Migraine: multiple processes,
complex pathophysiology. J Neurosci. 2015;35(17):6619-
29.https://doi.org/10.1523/jneurosci.0373-15.2015
- 4. Kissin I. Scientometrics of drug discovery efforts: pain-related
molecular targets. Drug Des Devel Ther. 2015;9:3393-404.
https://doi.org/10.2147/dddt.S85633
- 5. Thorlund K, Toor K, Wu P, Chan K, Druyts E, Ramos E, et
al. Comparative tolerability of treatments for acute migraine: A network meta-analysis. Cephalalgia. 2017;37(10):965-78.
https://doi.org/10.1177/0333102416660552
- 6. Chang DS, Hsu E, Hottinger DG, Cohen SP. Anti-nerve
growth factor in pain management: current evidence. J Pain
Res. 2016;9:373-83.https://doi.org/10.2147/jpr.S89061
- 7. Romero-Reyes M, Akerman S. Update on animal models of
migraine. Curr Pain Headache Rep. 2014;18(11):462.https://
doi.org/10.1007/s11916-014-0462-z
- 8. Létienne R, Verscheure Y, John GW. Investigation of the effects
of naratriptan, rizatriptan, and sumatriptan on jugular
venous oxygen saturation in anesthetized pigs: implications
for their mechanism of acute antimigraine action. J Pharmacol
Exp Ther. 2003;307(1):168-74.https://doi.org/10.1124/
jpet.103.054940
- 9. Drummond PD, Lance JW. Extracranial vascular changes
and the source of pain in migraine headache. Ann Neurol.
1983;13(1):32-7.https://doi.org/10.1002/ana.410130108
- 10. Friberg L, Olesen J, Iversen HK, Sperling B. Migraine pain
associated with middle cerebral artery dilatation: reversal
by sumatriptan. Lancet. 1991;338(8758):13-7.https://doi.
org/10.1016/0140-6736(91)90005-a
- 11. De Vries P, Villalón CM, Saxena PR. Pharmacological aspects
of experimental headache models in relation to acute antimigraine
therapy. Eur J Pharmacol. 1999;375(1-3):61-74.https://
doi.org/10.1016/s0014-2999(99)00197-1
- 12. Edvinsson L. Blockade of CGRP receptors in the intracranial
vasculature: a new target in the treatment of headache. Cephalalgia.
2004;24(8):611-22.https://doi.org/10.1111/j.1468-
2982.2003.00719.x
- 13. Den Boer MO, Van Woerkens LJ, Somers JA, Duncker DJ,
Lachmann B, Saxena PR, et al. On the preservation and regulation
of vascular tone in arteriovenous anastomoses during
anesthesia. J Appl Physiol (1985). 1993;75(2):782-9.https://
doi.org/10.1152/jappl.1993.75.2.782
- 14. Kapoor K, Arulmani U, Heiligers JP, Garrelds IM, Willems
EW, Doods H, et al. Effects of the CGRP receptor antagonist
BIBN4096BS on capsaicin-induced carotid haemodynamic
changes in anaesthetised pigs. Br J Pharmacol.
2003;140(2):329-38.https://doi.org/10.1038/sj.bjp.0705451
- 15. Akerman S, Holland PR, Hoffmann J. Pearls and pitfalls in
experimental in vivo models of migraine: dural trigeminovascular
nociception. Cephalalgia. 2013;33(8):577-92.https://doi.
org/10.1177/0333102412472071
- 16. Knyihár-Csillik E, Tajti J, Samsam M, Sáry G, Slezák S, Vécsei
L. Effect of a serotonin agonist (sumatriptan) on the peptidergic
innervation of the rat cerebral dura mater and on the expression
of c-fos in the caudal trigeminal nucleus in an experimental
migraine model. J Neurosci Res. 1997;48(5):449-64
- 17. Buzzi MG, Carter WB, Shimizu T, Heath H, 3rd, Moskowitz
MA. Dihydroergotamine and sumatriptan attenuate levels of
CGRP in plasma in rat superior sagittal sinus during electrical
stimulation of the trigeminal ganglion. Neuropharmacology.
1991;30(11):1193-200.https://doi.org/10.1016/0028-
3908(91)90165-8
- 18. Zagami AS, Goadsby PJ, Edvinsson L. Stimulation of the
superior sagittal sinus in the cat causes release of vasoactive
peptides. Neuropeptides. 1990;16(2):69-75.https://doi.
org/10.1016/0143-4179(90)90114-e
- 19. Robert C, Bourgeais L, Arreto CD, Condes-Lara M, Noseda
R, Jay T, et al. Paraventricular hypothalamic regulation of
trigeminovascular mechanisms involved in headaches. J Neurosci.
2013;33(20):8827-40.https://doi.org/10.1523/jneurosci.
0439-13.2013
- 20. Holland PR, Akerman S, Andreou AP, Karsan N, Wemmie JA,
Goadsby PJ. Acid-sensing ion channel 1: a novel therapeutic
target for migraine with aura. Ann Neurol. 2012;72(4):559-63.
https://doi.org/10.1002/ana.23653
- 21. Vila-Pueyo M, Strother LC, Kefel M, Goadsby PJ, Holland
PR. Divergent influences of the locus coeruleus on migraine
pathophysiology. Pain. 2019;160(2):385-94.https://doi.
org/10.1097/j.pain.0000000000001421
- 22. Knight YE, Classey JD, Lasalandra MP, Akerman S, Kowacs
F, Hoskin KL, et al. Patterns of fos expression in the rostral
medulla and caudal pons evoked by noxious craniovascular
stimulation and periaqueductal gray stimulation in the cat.
Brain Res. 2005;1045(1-2):1-11.https://doi.org/10.1016/j.brainres.
2005.01.091
- 23. Akerman S, Karsan N, Bose P, Hoffmann JR, Holland PR, Romero-
Reyes M, et al. Nitroglycerine triggers triptan-responsive
cranial allodynia and trigeminal neuronal hypersensitivity.
Brain. 2019;142(1):103-19.https://doi.org/10.1093/brain/
awy313
- 24. Summ O, Charbit AR, Andreou AP, Goadsby PJ. Modulation
of nocioceptive transmission with calcitonin gene-related
peptide receptor antagonists in the thalamus. Brain.
2010;133(9):2540-8.https://doi.org/10.1093/brain/awq224
- 25. Akerman S, Goadsby PJ. Neuronal PAC1 receptors mediate
delayed activation and sensitization of trigeminocervical
neurons: Relevance to migraine. Sci Transl Med.
2015;7(308):308ra157.https://doi.org/10.1126/scitranslmed.
aaa7557
- 26. Ramachandran R, Bhatt DK, Ploug KB, Olesen J, Jansen-Olesen
I, Hay-Schmidt A, et al. A naturalistic glyceryl trinitrate infusion
migraine model in the rat. Cephalalgia. 2012;32(1):73-
84.https://doi.org/10.1177/0333102411430855
- 27. Pedersen SH, Ramachandran R, Amrutkar DV, Petersen S, Olesen
J, Jansen-Olesen I. Mechanisms of glyceryl trinitrate provoked mast cell degranulation. Cephalalgia. 2015;35(14):1287-
97.https://doi.org/10.1177/0333102415574846
- 28. Hougaard Pedersen S, Maretty L, Ramachandran R, Sibbesen
JA, Yakimov V, Elgaard-Christensen R, et al. RNA Sequencing
of Trigeminal Ganglia in Rattus Norvegicus after
Glyceryl Trinitrate Infusion with Relevance to Migraine.
PLoS One. 2016;11(5):e0155039.https://doi.org/10.1371/journal.
pone.0155039
- 29. Ford AP. In pursuit of P2X3 antagonists: novel therapeutics
for chronic pain and afferent sensitization. Purinergic Signal.
2012;8(Suppl 1):3-26.https://doi.org/10.1007/s11302-011-
9271-6
- 30. Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ,
Charles A. Characterization of a novel model of chronic
migraine. Pain. 2014;155(2):269-74.https://doi.org/10.1016/j.
pain.2013.10.004
- 31. Ferrari LF, Levine JD, Green PG. Mechanisms mediating
nitroglycerin-induced delayed-onset hyperalgesia in the rat.
Neuroscience. 2016;317:121-9.https://doi.org/10.1016/j.neuroscience.
2016.01.005
- 32. McGuinness BW, Harris EL. “Monday head”: an interesting
occupational disorder. Br Med J. 1961;2(5254):745-7.https://
doi.org/10.1136/bmj.2.5254.745
- 33. Guo S, Olesen J, Ashina M. Phosphodiesterase 3 inhibitor cilostazol
induces migraine-like attacks via cyclic AMP increase.
Brain. 2014;137(Pt 11):2951-9.https://doi.org/10.1093/brain/
awu244
- 34. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby
PJ. Brain activations in the premonitory phase of nitroglycerin-
triggered migraine attacks. Brain. 2014;137(Pt 1):232-41.
https://doi.org/10.1093/brain/awt320
- 35. Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum
AI, et al. Sumatriptan alleviates nitroglycerin-induced
mechanical and thermal allodynia in mice. Cephalalgia.
2010;30(2):170-8.https://doi.org/10.1111/j.1468-
2982.2009.01864.x
- 36. Brennan KC, Bates EA, Shapiro RE, Zyuzin J, Hallows
WC, Huang Y, et al. Casein kinase iδ mutations in familial
migraine and advanced sleep phase. Sci Transl Med.
2013;5(183):183ra56, 1-11.https://doi.org/10.1126/scitranslmed.
3005784
- 37. De Logu F, Landini L, Janal MN, Li Puma S, De Cesaris F,
Geppetti P, et al. Migraine-provoking substances evoke periorbital
allodynia in mice. J Headache Pain. 2019;20(1):18.
https://doi.org/10.1186/s10194-019-0968-1
- 38. Cui Y, Toyoda H, Sako T, Onoe K, Hayashinaka E, Wada Y, et
al. A voxel-based analysis of brain activity in high-order trigeminal
pathway in the rat induced by cortical spreading depression.
Neuroimage. 2015;108:17-22.https://doi.org/10.1016/j.
neuroimage.2014.12.047
- 39. Cui Y, Takashima T, Takashima-Hirano M, Wada Y, Shukuri
M, Tamura Y, et al. 11C-PK11195 PET for the in vivo evaluation
of neuroinflammation in the rat brain after cortical spreading
depression. J Nucl Med. 2009;50(11):1904-11.https://doi.
org/10.2967/jnumed.109.066498
- 40. Ji RR, Chamessian A, Zhang YQ. Pain regulation by nonneuronal
cells and inflammation. Science. 2016;354(6312):572-
7.https://doi.org/10.1126/science.aaf8924
- 41. Spong KE, Rodríguez EC, Robertson RM. Spreading depolarization
in the brain of Drosophila is induced by inhibition of
the Na+/K+-ATPase and mitigated by a decrease in activity
of protein kinase G. J Neurophysiol. 2016;116(3):1152-60.
https://doi.org/10.1152/jn.00353.2016
- 42. Haerter K, Ayata C, Moskowitz MA. Cortical Spreading
Depression: A Model for Understanding Migraine Biology
and Future Drug Targets. Headache Currents. 2005;2(5):97-
103.https://doi.org/https://doi.org/10.1111/j.1743-
5013.2005.00017.x
- 43. Biosa G, Bastianoni S, Rustici M. Chemical waves. Chemistry.
2006;12(13):3430-7.https://doi.org/10.1002/chem.200500929
- 44. Kunkler PE, Hulse RE, Schmitt MW, Nicholson C, Kraig RP.
Optical current source density analysis in hippocampal organotypic
culture shows that spreading depression occurs with
uniquely reversing currents. J Neurosci. 2005;25(15):3952-61.
https://doi.org/10.1523/jneurosci.0491-05.2005
- 45. Gursoy-Ozdemir Y, Qiu J, Matsuoka N, Bolay H, Bermpohl D,
Jin H, et al. Cortical spreading depression activates and upregulates
MMP-9. J Clin Invest. 2004;113(10):1447-55.https://
doi.org/10.1172/jci21227
- 46. Moskowitz MA. Genes, proteases, cortical spreading depression
and migraine: impact on pathophysiology and treatment.
Funct Neurol. 2007;22(3):133-6
- 47. Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading
depression provokes the expression of c-fos protein-like immunoreactivity
within trigeminal nucleus caudalis via trigeminovascular
mechanisms. J Neurosci. 1993;13(3):1167-77.
https://doi.org/10.1523/jneurosci.13-03-01167.1993
- 48. Liu CH, You Z, Ren J, Kim YR, Eikermann-Haerter K, Liu PK.
Noninvasive delivery of gene targeting probes to live brains
for transcription MRI. Faseb j. 2008;22(4):1193-203.https://
doi.org/10.1096/fj.07-9557com
- 49. Ayata C, Jin H, Kudo C, Dalkara T, Moskowitz MA. Suppression
of cortical spreading depression in migraine prophylaxis.
Ann Neurol. 2006;59(4):652-61.https://doi.org/10.1002/
ana.20778
- 50. Lauritzen M. Pathophysiology of the migraine aura. The
spreading depression theory. Brain. 1994;117 ( Pt 1):199-210.
https://doi.org/10.1093/brain/117.1.199
- 51. Kleeberg J, Petzold GC, Major S, Dirnagl U, Dreier JP. ET-1
induces cortical spreading depression via activation of the
ETA receptor/phospholipase C pathway in vivo. Am J Physiol
Heart Circ Physiol. 2004;286(4):H1339-46.https://doi.
org/10.1152/ajpheart.00227.2003
- 52. Otori T, Greenberg JH, Welsh FA. Cortical spreading depression
causes a long-lasting decrease in cerebral blood flow
and induces tolerance to permanent focal ischemia in rat brain.
J Cereb Blood Flow Metab. 2003;23(1):43-50.https://doi.
org/10.1097/01.Wcb.0000035180.38851.38
- 53. Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker
D, Fischl B, et al. Mechanisms of migraine aura revealed
by functional MRI in human visual cortex. Proc Natl Acad
Sci U S A. 2001;98(8):4687-92.https://doi.org/10.1073/
pnas.071582498
- 54. Fabricius M, Fuhr S, Bhatia R, Boutelle M, Hashemi P, Strong
AJ, et al. Cortical spreading depression and peri-infarct depolarization
in acutely injured human cerebral cortex. Brain.
2006;129(Pt 3):778-90.https://doi.org/10.1093/brain/awh716
- 55. Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, Ouaknine
GE. Cortical spreading depression recorded from the
human brain using a multiparametric monitoring system. Brain
Res. 1996;740(1-2):268-74.https://doi.org/10.1016/s0006-
8993(96)00874-8
- 56. Milner PM. Note on a possible correspondence between the
scotomas of migraine and spreading depression of Leão. Electroencephalogr
Clin Neurophysiol. 1958;10(4):705.https://doi.
org/10.1016/0013-4694(58)90073-7
- 57. Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed
by spreading oligemia and impaired activation of rCBF in
classic migraine. Ann Neurol. 1981;9(4):344-52.https://doi.
org/10.1002/ana.410090406
- 58. Lauritzen M, Skyhøj Olsen T, Lassen NA, Paulson OB. Changes
in regional cerebral blood flow during the course of classic
migraine attacks. Ann Neurol. 1983;13(6):633-41.https://doi.
org/10.1002/ana.410130609
- 59. PENFIELD W, McNAUGHTON F. DURAL HEADACHE
AND INNERVATION OF THE DURA MATER. Archives
of Neurology & Psychiatry. 1940;44(1):43-75.https://doi.
org/10.1001/archneurpsyc.1940.02280070051003
- 60. Amin FM, Asghar MS, Hougaard A, Hansen AE, Larsen VA,
de Koning PJ, et al. Magnetic resonance angiography of intracranial
and extracranial arteries in patients with spontaneous
migraine without aura: a cross-sectional study. Lancet
Neurol. 2013;12(5):454-61.https://doi.org/10.1016/s1474-
4422(13)70067-x
- 61. May A, Goadsby PJ. The trigeminovascular system in humans:
pathophysiologic implications for primary headache
syndromes of the neural influences on the cerebral circulation.
J Cereb Blood Flow Metab. 1999;19(2):115-27.https://doi.
org/10.1097/00004647-199902000-00001
- 62. Akerman S, Holland PR, Goadsby PJ. Diencephalic and
brainstem mechanisms in migraine. Nat Rev Neurosci.
2011;12(10):570-84.https://doi.org/10.1038/nrn3057
- 63. Holland PR, Akerman S, Goadsby PJ. Modulation of nociceptive
dural input to the trigeminal nucleus caudalis
via activation of the orexin 1 receptor in the rat. Eur J Neurosci.
2006;24(10):2825-33.https://doi.org/10.1111/j.1460-
9568.2006.05168.x
- 64. Liu Y, Broman J, Edvinsson L. Central projections of the
sensory innervation of the rat middle meningeal artery. Brain
Res. 2008;1208:103-10.https://doi.org/10.1016/j.brainres.
2008.02.078
- 65. Melo-Carrillo A, Strassman AM, Nir RR, Schain AJ, Noseda
R, Stratton J, et al. Fremanezumab-A Humanized Monoclonal
Anti-CGRP Antibody-Inhibits Thinly Myelinated (Aδ)
But Not Unmyelinated (C) Meningeal Nociceptors. J Neurosci.
2017;37(44):10587-96.https://doi.org/10.1523/jneurosci.
2211-17.2017
- 66. Hu J, Milenkovic N, Lewin GR. The high threshold mechanotransducer:
a status report. Pain. 2006;120(1-2):3-7.https://doi.
org/10.1016/j.pain.2005.11.002
- 67. Charbit AR, Akerman S, Goadsby PJ. Trigeminocervical
complex responses after lesioning dopaminergic A11
nucleus are modified by dopamine and serotonin mechanisms.
Pain. 2011;152(10):2365-76.https://doi.org/10.1016/j.
pain.2011.07.002
- 68. Pozo-Rosich P, Storer RJ, Charbit AR, Goadsby PJ. Periaqueductal
gray calcitonin gene-related peptide modulates trigeminovascular
neurons. Cephalalgia. 2015;35(14):1298-307.
https://doi.org/10.1177/0333102415576723
- 69. Noseda R, Bernstein CA, Nir RR, Lee AJ, Fulton AB, Bertisch
SM, et al. Migraine photophobia originating in cone-driven
retinal pathways. Brain. 2016;139(Pt 7):1971-86.https://doi.
org/10.1093/brain/aww119
- 70. Bloom FE. To spritz or not to spritz: the doubtful value of aimless
iontophoresis. Life Sci. 1974;14(10):1819-34.https://doi.
org/10.1016/0024-3205(74)90400-7
- 71. Donaldson C, Boers PM, Hoskin KL, Zagami AS, Lambert
GA. The role of 5-HT1B and 5-HT1D receptors in the selective
inhibitory effect of naratriptan on trigeminovascular
neurons. Neuropharmacology. 2002;42(3):374-85.https://doi.
org/10.1016/s0028-3908(01)00190-3
- 72. Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related
peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol. 2004;142(7):1171-81.
https://doi.org/10.1038/sj.bjp.0705807
- 73. Shields KG, Goadsby PJ. Serotonin receptors modulate trigeminovascular
responses in ventroposteromedial nucleus of
thalamus: a migraine target? Neurobiol Dis. 2006;23(3):491-
501.https://doi.org/10.1016/j.nbd.2006.04.003
- 74. Thankachan S, Katsuki F, McKenna JT, Yang C, Shukla C,
Deisseroth K, et al. Thalamic Reticular Nucleus Parvalbumin
Neurons Regulate Sleep Spindles and Electrophysiological
Aspects of Schizophrenia in Mice. Sci Rep. 2019;9(1):3607.
https://doi.org/10.1038/s41598-019-40398-9
- 75. Bullitt E. Expression of c-fos-like protein as a marker for
neuronal activity following noxious stimulation in the rat. J
Comp Neurol. 1990;296(4):517-30.https://doi.org/10.1002/
cne.902960402
- 76. Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M. The
c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription
of AP-1 responsive genes. Cell. 1988;54(4):541-52.
https://doi.org/10.1016/0092-8674(88)90076-1
- 77. Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV.
Immediate Early Genes, Memory and Psychiatric Disorders:
Focus on c-Fos, Egr1 and Arc. Front Behav Neurosci.
2018;12:79.https://doi.org/10.3389/fnbeh.2018.00079
- 78. Coggeshall RE. Fos, nociception and the dorsal horn. Prog
Neurobiol. 2005;77(5):299-352.https://doi.org/10.1016/j.pneurobio.
2005.11.002
- 79. Sundquist SJ, Nisenbaum LK. Fast Fos: rapid protocols for single-
and double-labeling c-Fos immunohistochemistry in fresh
frozen brain sections. J Neurosci Methods. 2005;141(1):9-20.
https://doi.org/10.1016/j.jneumeth.2004.05.007
- 80. Morgan JI, Curran T. Calcium as a modulator of the immediate-
early gene cascade in neurons. Cell Calcium. 1988;9(5-
6):303-11.https://doi.org/10.1016/0143-4160(88)90011-5
- 81. Harris JA. Using c-fos as a neural marker of pain. Brain
Res Bull. 1998;45(1):1-8.https://doi.org/10.1016/s0361-
9230(97)00277-3
- 82. Bergerot A, Holland PR, Akerman S, Bartsch T, Ahn AH,
MaassenVanDenBrink A, et al. Animal models of migraine:
looking at the component parts of a complex disorder. Eur J
Neurosci. 2006;24(6):1517-34.https://doi.org/10.1111/j.1460-
9568.2006.05036.x
- 83. Hoskin KL, Bulmer DC, Goadsby PJ. Fos expression in the
trigeminocervical complex of the cat after stimulation of
the superior sagittal sinus is reduced by L-NAME. Neurosci
Lett. 1999;266(3):173-6.https://doi.org/10.1016/s0304-
3940(99)00281-5
- 84. Tassorelli C, Joseph SA. Systemic nitroglycerin induces
Fos immunoreactivity in brainstem and forebrain structures
of the rat. Brain Res. 1995;682(1-2):167-81.https://doi.
org/10.1016/0006-8993(95)00348-t
- 85. May A, Goadsby PJ. Substance P receptor antagonists
in the therapy of migraine. Expert Opin Investig Drugs.
2001;10(4):673-8.https://doi.org/10.1517/13543784.10.4.673
- 86. Shepheard SL, Williamson DJ, Williams J, Hill RG, Hargreaves
RJ. Comparison of the effects of sumatriptan and the NK1
antagonist CP-99,994 on plasma extravasation in Dura mater
and c-fos mRNA expression in trigeminal nucleus caudalis
of rats. Neuropharmacology. 1995;34(3):255-61.https://doi.
org/10.1016/0028-3908(94)00153-j
- 87. Hunt SP, Pini A, Evan G. Induction of c-fos-like protein in
spinal cord neurons following sensory stimulation. Nature.
1987;328(6131):632-4.https://doi.org/10.1038/328632a0
- 88. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated
protein kinase: conservation of a three-kinase module
from yeast to human. Physiol Rev. 1999;79(1):143-80.https://
doi.org/10.1152/physrev.1999.79.1.143
- 89. Martins-Oliveira M, Akerman S, Holland PR, Hoffmann JR,
Tavares I, Goadsby PJ. Neuroendocrine signaling modulates
specific neural networks relevant to migraine. Neurobiol Dis.
2017;101:16-26.https://doi.org/10.1016/j.nbd.2017.01.005
- 90. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh
TL. Quantitative assessment of tactile allodynia in the rat
paw. J Neurosci Methods. 1994;53(1):55-63.https://doi.
org/10.1016/0165-0270(94)90144-9
- 91. Minett MS, Quick K, Wood JN. Behavioral Measures of Pain
Thresholds. Curr Protoc Mouse Biol. 2011;1(3):383-412.
https://doi.org/10.1002/9780470942390.mo110116
- 92. Hansen JM, Thomsen LL, Olesen J, Ashina M. Familial
hemiplegic migraine type 1 shows no hypersensitivity to
nitric oxide. Cephalalgia. 2008;28(5):496-505.https://doi.
org/10.1111/j.1468-2982.2008.01559.x
- 93. Farajdokht F, Mohaddes G, Shanehbandi D, Karimi P, Babri
S. Ghrelin attenuated hyperalgesia induced by chronic
nitroglycerin: CGRP and TRPV1 as targets for migraine
management. Cephalalgia. 2018;38(11):1716-30.https://doi.
org/10.1177/0333102417748563
- 94. Ben Aissa M, Tipton AF, Bertels Z, Gandhi R, Moye LS, Novack
M, et al. Soluble guanylyl cyclase is a critical regulator
of migraine-associated pain. Cephalalgia. 2018;38(8):1471-
84.https://doi.org/10.1177/0333102417737778
- 95. Edelmayer RM, Vanderah TW, Majuta L, Zhang ET, Fioravanti
B, De Felice M, et al. Medullary pain facilitating neurons
mediate allodynia in headache-related pain. Ann Neurol.
2009;65(2):184-93.https://doi.org/10.1002/ana.21537
- 96. Fioravanti B, Kasasbeh A, Edelmayer R, Skinner DP, Jr., Hartings
JA, Burklund RD, et al. Evaluation of cutaneous allodynia following induction of cortical spreading depression in freely
moving rats. Cephalalgia. 2011;31(10):1090-100.https://
doi.org/10.1177/0333102411410609
- 97. Filiz A, Tepe N, Eftekhari S, Boran HE, Dilekoz E, Edvinsson
L, et al. CGRP receptor antagonist MK-8825
attenuates cortical spreading depression induced pain
behavior. Cephalalgia. 2019;39(3):354-65.https://doi.
org/10.1177/0333102417735845
- 98. Colburn RW, Lubin ML, Stone DJ, Jr., Wang Y, Lawrence
D, D’Andrea MR, et al. Attenuated cold sensitivity in
TRPM8 null mice. Neuron. 2007;54(3):379-86.https://doi.
org/10.1016/j.neuron.2007.04.017
- 99. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new
and sensitive method for measuring thermal nociception in
cutaneous hyperalgesia. Pain. 1988;32(1):77-88.https://doi.
org/10.1016/0304-3959(88)90026-7
- 100. Anderson EM, Mills R, Nolan TA, Jenkins AC, Mustafa G,
Lloyd C, et al. Use of the Operant Orofacial Pain Assessment
Device (OPAD) to measure changes in nociceptive behavior. J
Vis Exp. 2013(76):e50336.https://doi.org/10.3791/50336