Review
BibTex RIS Cite

İlaç Geliştirme Uygulamalarında Click Kimyasının Kullanımı

Year 2024, Issue: Special Issue / International Multidisciplinary Symposium on Drug Research and Development, DRD-2023, 54 - 63, 01.07.2024
https://doi.org/10.52794/hujpharm.1368714

Abstract

Click kimyası, heteroatom bağlantıları yoluyla küçük yapı taşlarını bir araya getiren güçlü, güvenilir ve seçici reaksiyonlar olarak tanımlanmaktadır. Click reaksiyonları, kimyasal dönüşümler için pratik ve uygun bir yaklaşım olan modüler bir stratejidir. Bu strateji, hafif reaksiyon koşulları, ara ürünlerin kolay saflaştırılması ve ilaç hedeflerinin görüntülenmesi gibi zorlu süreçler için umut verici bir yaklaşım olmuştur. Bu avantajlar, farmasötik bilimlerde ilaç keşfi ve geliştirilmesine yeni bir boyut kazandırmıştır. Klik reaksiyonları, günümüzde ilaç geliştirme çalışmaları, biyokonjugasyon, polimer ve malzeme kimyası, ilaç dağıtım sistemleri gibi alanlarda çalışılan ilginç reaksiyonlardır. Bu derlemede, biyouyumluluğu ve güvenilirliği nedeniyle click kimyasının altın standardı olarak kabul edilen bakır katalizli Huisgen 1,3-dipolar siklokatılma reaksiyonunun önemli noktaları ve seçici olarak oluşan 1,2,3-triazolün ilaç geliştirme çalışmalarında kullanımı tartışılmaktadır.

References

  • 1. Ozturk T, Amna B. Click chemistry: a fascinating method of connecting organic groups. Org. Commun. 2021;14(2):97– 120. http://doi.org/10.25135/acg.oc.100.21.03.2006
  • 2. Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)- Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J Org Chem. 2002;67(9):3057–64. https://doi. org/10.1021/jo011148j
  • 3. Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition. 2001;40(11):2004–21. https:// doi.org/10.1002/qsar.200740086
  • 4. Kaur J, Saxena M, Rishi N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Biocon-jug Chem. 2021;32(8):1455–71. https://doi.org/10.1021/acs. bioconjchem.1c00247
  • 5. Kitamura S, Zheng Q, Woehl JL, Solania A, Chen E, Dillon N, et al. Sulfur(VI) Fluoride Exchange (SuFEx)-Enabled High-Throughput Medicinal Chemistry. J Am Chem Soc. 2020;142(25):10899–904. https://doi.org/10.1021/ jacs.9b13652
  • 6. Ramapanicker R, Chauhan P. Click Chemistry: Mechanistic and Synthetic Perspectives. In: Chandrasekaran, S, editor. Click Reactions in Organic Synthesis. Weinheim, Germany: Wiley-VCH Verlag GmbH, Co. KGaA; 2016. p.1–24.
  • 7. Spiteri C, Moses, J. E. Copper-catalyzed azide-alkyne cycloaddition: regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Angew Chem Int Ed Engl. 2010;49(1), 31–33. https://doi.org/10.1002/anie.200905322
  • 8. Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA. Click chemistry reactions in medicinal chemistry: Applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med Res Rev. 2008;28(2):278-308. https://doi. org/10.1002/med.20107
  • 9. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl. 2002; 15;41(14):2596-9. https:// doi.org/10.1002/1521-3773(20020715)41:14<2596::AIDANIE2596> 3.0.CO;2-4
  • 10. Zhong W, Sun B, Lu C, Yu H, Wang C, He L, Gu J, Chen S, Liu Y, Jing X, Bi Z, Yang G, Zhou H, Sun T, Yang C. Problems and Solutions in Click Chemistry Applied to Drug Probes. Sci Rep. 2016 Oct 26;6: 35579. https://doi.org/10.1038/srep35579
  • 11. Lee LV, Mitchell ML, Huang SJ, Fokin VV, Sharpless KB, Wong CH. A potent and highly selective inhibitor of human alpha-1,3-fucosyltransferase via click chemistry. J Am Chem Soc. 2003 Aug 13;125(32):9588-9. https://doi.org/10.1021/ ja0302836
  • 12. Horne WS, Stout CD, Ghadiri MR. A Heterocyclic Peptide Nanotube. J Am Chem Soc. 2003;125(31):9372–6. https://doi. org/10.1021/ja034358h
  • 13. Dandriyal J, Singla R, Kumar M, Jaitak V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur J Med Chem. 2016; 119:141-168 https://doi. org/10.1016/j.ejmech.2016.03.087
  • 14. Slavova KI, Todorov LT, Belskaya NP, Palafox MA, Kostova IP. Developments in the Application of 1,2,3-Triazoles in Cancer Treatment. Recent Pat Anticancer Drug Discov. 2020;15(2):92-112. https://doi.org/10.2174/15748928156662 00717164457
  • 15. Usachev BI. Chemistry of fluoroalkyl-substituted 1,2,3-triazoles. J Fluor Chem. 2018;210:6–45. https://doi.org/10.1016/j. jfluchem.2018.02.012
  • 16. Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today. 2017;22(10):1572- 1581. https://doi.org/10.1016/j.drudis.2017.05.014
  • 17. Langdon SR, Ertl P, Brown N. Bioisosteric Replacement and Scaffold Hopping in Lead Generation and Optimization. Mol Inform. 2010;29(5):366-385. https://doi.org/10.1002/ minf.201000019
  • 18. Phillips OA, Udo EE, Ali AA, Al-Hassawi N. Synthesis and antibacterial activity of 5-substituted oxazolidinones. Bioorg Med Chem. 2003;11(1):35-41. https://doi.org/10.1016/s0968- 0896(02)00423-6
  • 19. Pagliai F, Pirali T, Del Grosso E, Di Brisco R, Tron GC, Sorba G, et al. Rapid Synthesis of Triazole-Modified Resveratrol Analogues via Click Chemistry. J Med Chem. 2006;49(2):467– 70. https://doi.org/10.1021/jm051118z
  • 20. Hou J, Liu X, Shen J, Zhao G, Wang PG. The impact of click chemistry in medicinal chemistry. Expert Opin Drug Discov. 2012;7(6):489-501. https://doi.org/10.1517/17460441.2012.6 82725
  • 21. Roy B, Chakraborty A, Ghosh SK, Basak A. Design, synthesis and bioactivity of catechin/epicatechin and 2-azetidine derived chimeric molecules. Bioorg Med Chem Lett. 2009;19(24):7007-7010. https://doi.org/10.1016/j. bmcl.2009.04.084
  • 22. Moses JE, Moorhouse AD. The growing applications of click chemistry. Chem Soc Rev. 2007;36(8):1249–62. https://doi.org/10.1039/B613014N
  • 23. Nwe K, Brechbiel MW. Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother Radiopharm. 2009 Jun;24(3):289-302. https://doi.org/10.1089/cbr.2008.0626
  • 24. Kenry, Liu B. Bio-orthogonal Click Chemistry for In Vivo Bioimaging. Trends Chem. 2019; 1(8):763–78. https://doi. org/10.1016/j.trechm.2019.08.003
  • 25. Wu YM, Deng J, Li Y, Chen QY. Regiospecific Synthesis of 1,4,5-Trisubstituted-1,2,3-triazole via One-Pot Reaction Promoted by Copper(I) Salt. Synthesis. 2005;(8):1314–8. https:// doi.org/10.1055/s-2005-861860
  • 26. Wang Q, Chan TR, Hilgraf R, Fokin V V., Sharpless KB, Finn MG. Bioconjugation by Copper(I)-Catalyzed Azide-Alkyne [3+2] Cycloaddition. J Am Chem Soc. 2003;125(11): 3192–3. https://doi.org/10.1021/ja021381e
  • 27. Hein CD, Liu XM, Wang D. Click Chemistry, A Powerful Tool for Pharmaceutical Sciences. Pharm Res. 2008;25(10):2216– 30. https://doi.org/10.1007/s11095-008-9616-1
  • 28. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126(46): 15046–15047. https://doi.org/10.1021/ja044996f
  • 29. Bird RE, Lemmel SA, Yu X, Zhou QA. Bioorthogonal Chemistry and Its Applications. Bioconjug Chem. 2021;32(12):2457–79. https://doi.org/10.1021/acs. bioconjchem.1c00461
  • 30. Takayama Y, Kusamori K, Nishikawa M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules. 2019;24(1):172. https://doi.org/10.3390/molecules24010172

The Use of Click Chemistry in Drug Development Applications

Year 2024, Issue: Special Issue / International Multidisciplinary Symposium on Drug Research and Development, DRD-2023, 54 - 63, 01.07.2024
https://doi.org/10.52794/hujpharm.1368714

Abstract

Click chemistry is defined as powerful, reliable and selective reactions that assemble small building blocks via heteroatom linkages. Click reactions are a modular strategy that is a practical and convenient approach to chemical transformations. This strategy has been a promising approach for challenging processes such as mild reaction conditions, easy purification of intermediates, and imaging of drug targets. These advantages have added a new dimension to drug discovery and development in pharmaceutical sciences. Click reactions are interesting reactions that are currently studied in drug development studies, bioconjugation, polymer and material chemistry, drug delivery systems. In this review, important highlights of the copper-catalysed Huisgen 1,3-dipolar cycloaddition reaction, which is recognised to be the gold standard of click chemistry because of its biocompatibility and reliability, and the use of the selectively formed 1,2,3-triazole in drug development studies are discussed.

References

  • 1. Ozturk T, Amna B. Click chemistry: a fascinating method of connecting organic groups. Org. Commun. 2021;14(2):97– 120. http://doi.org/10.25135/acg.oc.100.21.03.2006
  • 2. Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)- Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J Org Chem. 2002;67(9):3057–64. https://doi. org/10.1021/jo011148j
  • 3. Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition. 2001;40(11):2004–21. https:// doi.org/10.1002/qsar.200740086
  • 4. Kaur J, Saxena M, Rishi N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Biocon-jug Chem. 2021;32(8):1455–71. https://doi.org/10.1021/acs. bioconjchem.1c00247
  • 5. Kitamura S, Zheng Q, Woehl JL, Solania A, Chen E, Dillon N, et al. Sulfur(VI) Fluoride Exchange (SuFEx)-Enabled High-Throughput Medicinal Chemistry. J Am Chem Soc. 2020;142(25):10899–904. https://doi.org/10.1021/ jacs.9b13652
  • 6. Ramapanicker R, Chauhan P. Click Chemistry: Mechanistic and Synthetic Perspectives. In: Chandrasekaran, S, editor. Click Reactions in Organic Synthesis. Weinheim, Germany: Wiley-VCH Verlag GmbH, Co. KGaA; 2016. p.1–24.
  • 7. Spiteri C, Moses, J. E. Copper-catalyzed azide-alkyne cycloaddition: regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Angew Chem Int Ed Engl. 2010;49(1), 31–33. https://doi.org/10.1002/anie.200905322
  • 8. Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA. Click chemistry reactions in medicinal chemistry: Applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med Res Rev. 2008;28(2):278-308. https://doi. org/10.1002/med.20107
  • 9. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl. 2002; 15;41(14):2596-9. https:// doi.org/10.1002/1521-3773(20020715)41:14<2596::AIDANIE2596> 3.0.CO;2-4
  • 10. Zhong W, Sun B, Lu C, Yu H, Wang C, He L, Gu J, Chen S, Liu Y, Jing X, Bi Z, Yang G, Zhou H, Sun T, Yang C. Problems and Solutions in Click Chemistry Applied to Drug Probes. Sci Rep. 2016 Oct 26;6: 35579. https://doi.org/10.1038/srep35579
  • 11. Lee LV, Mitchell ML, Huang SJ, Fokin VV, Sharpless KB, Wong CH. A potent and highly selective inhibitor of human alpha-1,3-fucosyltransferase via click chemistry. J Am Chem Soc. 2003 Aug 13;125(32):9588-9. https://doi.org/10.1021/ ja0302836
  • 12. Horne WS, Stout CD, Ghadiri MR. A Heterocyclic Peptide Nanotube. J Am Chem Soc. 2003;125(31):9372–6. https://doi. org/10.1021/ja034358h
  • 13. Dandriyal J, Singla R, Kumar M, Jaitak V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur J Med Chem. 2016; 119:141-168 https://doi. org/10.1016/j.ejmech.2016.03.087
  • 14. Slavova KI, Todorov LT, Belskaya NP, Palafox MA, Kostova IP. Developments in the Application of 1,2,3-Triazoles in Cancer Treatment. Recent Pat Anticancer Drug Discov. 2020;15(2):92-112. https://doi.org/10.2174/15748928156662 00717164457
  • 15. Usachev BI. Chemistry of fluoroalkyl-substituted 1,2,3-triazoles. J Fluor Chem. 2018;210:6–45. https://doi.org/10.1016/j. jfluchem.2018.02.012
  • 16. Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today. 2017;22(10):1572- 1581. https://doi.org/10.1016/j.drudis.2017.05.014
  • 17. Langdon SR, Ertl P, Brown N. Bioisosteric Replacement and Scaffold Hopping in Lead Generation and Optimization. Mol Inform. 2010;29(5):366-385. https://doi.org/10.1002/ minf.201000019
  • 18. Phillips OA, Udo EE, Ali AA, Al-Hassawi N. Synthesis and antibacterial activity of 5-substituted oxazolidinones. Bioorg Med Chem. 2003;11(1):35-41. https://doi.org/10.1016/s0968- 0896(02)00423-6
  • 19. Pagliai F, Pirali T, Del Grosso E, Di Brisco R, Tron GC, Sorba G, et al. Rapid Synthesis of Triazole-Modified Resveratrol Analogues via Click Chemistry. J Med Chem. 2006;49(2):467– 70. https://doi.org/10.1021/jm051118z
  • 20. Hou J, Liu X, Shen J, Zhao G, Wang PG. The impact of click chemistry in medicinal chemistry. Expert Opin Drug Discov. 2012;7(6):489-501. https://doi.org/10.1517/17460441.2012.6 82725
  • 21. Roy B, Chakraborty A, Ghosh SK, Basak A. Design, synthesis and bioactivity of catechin/epicatechin and 2-azetidine derived chimeric molecules. Bioorg Med Chem Lett. 2009;19(24):7007-7010. https://doi.org/10.1016/j. bmcl.2009.04.084
  • 22. Moses JE, Moorhouse AD. The growing applications of click chemistry. Chem Soc Rev. 2007;36(8):1249–62. https://doi.org/10.1039/B613014N
  • 23. Nwe K, Brechbiel MW. Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother Radiopharm. 2009 Jun;24(3):289-302. https://doi.org/10.1089/cbr.2008.0626
  • 24. Kenry, Liu B. Bio-orthogonal Click Chemistry for In Vivo Bioimaging. Trends Chem. 2019; 1(8):763–78. https://doi. org/10.1016/j.trechm.2019.08.003
  • 25. Wu YM, Deng J, Li Y, Chen QY. Regiospecific Synthesis of 1,4,5-Trisubstituted-1,2,3-triazole via One-Pot Reaction Promoted by Copper(I) Salt. Synthesis. 2005;(8):1314–8. https:// doi.org/10.1055/s-2005-861860
  • 26. Wang Q, Chan TR, Hilgraf R, Fokin V V., Sharpless KB, Finn MG. Bioconjugation by Copper(I)-Catalyzed Azide-Alkyne [3+2] Cycloaddition. J Am Chem Soc. 2003;125(11): 3192–3. https://doi.org/10.1021/ja021381e
  • 27. Hein CD, Liu XM, Wang D. Click Chemistry, A Powerful Tool for Pharmaceutical Sciences. Pharm Res. 2008;25(10):2216– 30. https://doi.org/10.1007/s11095-008-9616-1
  • 28. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126(46): 15046–15047. https://doi.org/10.1021/ja044996f
  • 29. Bird RE, Lemmel SA, Yu X, Zhou QA. Bioorthogonal Chemistry and Its Applications. Bioconjug Chem. 2021;32(12):2457–79. https://doi.org/10.1021/acs. bioconjchem.1c00461
  • 30. Takayama Y, Kusamori K, Nishikawa M. Click Chemistry as a Tool for Cell Engineering and Drug Delivery. Molecules. 2019;24(1):172. https://doi.org/10.3390/molecules24010172
There are 30 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Review Articles
Authors

Beyza Düzleyen 0009-0006-3511-0789

Gülşah Karakaya 0000-0002-3827-7537

Mutlu Aytemir 0000-0002-1433-0356

Publication Date July 1, 2024
Acceptance Date December 11, 2023
Published in Issue Year 2024 Issue: Special Issue / International Multidisciplinary Symposium on Drug Research and Development, DRD-2023

Cite

Vancouver Düzleyen B, Karakaya G, Aytemir M. The Use of Click Chemistry in Drug Development Applications. HUJPHARM. 2024(Special Issue / International Multidisciplinary Symposium on Drug Research and Development, DRD-2023):54-63.